直线平面垂直的判定与性质Word格式文档下载.docx
- 文档编号:17908117
- 上传时间:2022-12-12
- 格式:DOCX
- 页数:30
- 大小:234.69KB
直线平面垂直的判定与性质Word格式文档下载.docx
《直线平面垂直的判定与性质Word格式文档下载.docx》由会员分享,可在线阅读,更多相关《直线平面垂直的判定与性质Word格式文档下载.docx(30页珍藏版)》请在冰豆网上搜索。
(3)垂直于同一条直线的两个平面平行.
(4)一条直线垂直于两平行平面中的一个,则这条直线与另一个平面也垂直.
题组一 思考辨析
1.判断下列结论是否正确(请在括号中打“√”或“×
”)
(1)直线l与平面α内的无数条直线都垂直,则l⊥α.( ×
)
(2)垂直于同一个平面的两平面平行.( ×
(3)直线a⊥α,b⊥α,则a∥b.( √ )
(4)若α⊥β,a⊥β,则a∥α.( ×
(5)若直线a⊥平面α,直线b∥α,则直线a与b垂直.( √ )
(6)若平面α内的一条直线垂直于平面β内的无数条直线,则α⊥β.( ×
题组二 教材改编
2.[P73T1]下列命题中错误的是( )
A.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面β
B.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β
C.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥平面γ
D.如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β
答案 D
解析 对于D,若平面α⊥平面β,则平面α内的直线可能不垂直于平面β,即与平面β的关系还可以是斜交、平行或在平面β内,其他选项均是正确的.
3.[P67T2]在三棱锥P-ABC中,点P在平面ABC中的射影为点O.
(1)若PA=PB=PC,则点O是△ABC的________心;
(2)若PA⊥PB,PB⊥PC,PC⊥PA,则点O是△ABC的________心.
答案
(1)外
(2)垂
解析
(1)如图1,连接OA,OB,OC,OP,
在Rt△POA,Rt△POB和Rt△POC中,PA=PC=PB,
所以OA=OB=OC,即O为△ABC的外心.
(2)如图2,延长AO,BO,CO分别交BC,AC,AB于H,D,G.
∵PC⊥PA,PB⊥PC,PA∩PB=P,
∴PC⊥平面PAB,又AB⊂平面PAB,∴PC⊥AB,
∵AB⊥PO,PO∩PC=P,
∴AB⊥平面PGC,又CG⊂平面PGC,
∴AB⊥CG,即CG为△ABC边AB上的高.
同理可证BD,AH分别为△ABC边AC,BC上的高,
即O为△ABC的垂心.
题组三 易错自纠
4.(2017·
湖南六校联考)已知m和n是两条不同的直线,α和β是两个不重合的平面,下列给出的条件中一定能推出m⊥β的是( )
A.α⊥β且m⊂αB.α⊥β且m∥α
C.m∥n且n⊥βD.m⊥n且α∥β
答案 C
解析 由线面垂直的判定定理,可知C正确.
5.如图所示,在正方体ABCD—A1B1C1D1中,点O,M,N分别是线段BD,DD1,D1C1的中点,则直线OM与AC,MN的位置关系是( )
A.与AC,MN均垂直
B.与AC垂直,与MN不垂直
C.与AC不垂直,与MN垂直
D.与AC,MN均不垂直
答案 A
解析 因为DD1⊥平面ABCD,所以AC⊥DD1,
又因为AC⊥BD,DD1∩BD=D,所以AC⊥平面BDD1B1,
因为OM⊂平面BDD1B1,所以OM⊥AC.
设正方体的棱长为2,则OM=
=
,
MN=
,ON=
所以OM2+MN2=ON2,所以OM⊥MN.故选A.
6.
如图所示,AB是半圆O的直径,VA垂直于半圆O所在的平面,点C是圆周上不同于A,B的任意一点,M,N分别为VA,VC的中点,则下列结论正确的是( )
A.MN∥AB
B.平面VAC⊥平面VBC
C.MN与BC所成的角为45°
D.OC⊥平面VAC
答案 B
解析 由题意得BC⊥AC,因为VA⊥平面ABC,BC⊂平面ABC,所以VA⊥BC.因为AC∩VA=A,所以BC⊥平面VAC.因为BC⊂平面VBC,所以平面VAC⊥平面VBC.故选B.
题型一 直线与平面垂直的判定与性质
典例 如图所示,在四棱锥P—ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°
,PA=AB=BC,E是PC的中点.
证明:
(1)CD⊥AE;
(2)PD⊥平面ABE.
证明
(1)在四棱锥P—ABCD中,
∵PA⊥底面ABCD,CD⊂平面ABCD,
∴PA⊥CD.
又∵AC⊥CD,PA∩AC=A,PA,AC⊂平面PAC,
∴CD⊥平面PAC.
而AE⊂平面PAC,∴CD⊥AE.
(2)由PA=AB=BC,∠ABC=60°
,可得AC=PA.
∵E是PC的中点,∴AE⊥PC.
由
(1)知AE⊥CD,且PC∩CD=C,PC,CD⊂平面PCD,
∴AE⊥平面PCD,
而PD⊂平面PCD,∴AE⊥PD.
∵PA⊥底面ABCD,AB⊂平面ABCD,∴PA⊥AB.
又∵AB⊥AD,且PA∩AD=A,
∴AB⊥平面PAD,而PD⊂平面PAD,
∴AB⊥PD.又∵AB∩AE=A,AB,AE⊂平面ABE,
∴PD⊥平面ABE.
思维升华证明线面垂直的常用方法及关键
(1)证明直线和平面垂直的常用方法:
①判定定理;
②垂直于平面的传递性(a∥b,a⊥α⇒b⊥α);
③面面平行的性质(a⊥α,α∥β⇒a⊥β);
④面面垂直的性质.
(2)证明线面垂直的关键是证线线垂直,而证明线线垂直则需借助线面垂直的性质.因此,判定定理与性质定理的合理转化是证明线面垂直的基本思想.
跟踪训练 如图,在直三棱柱ABC—A1B1C1中,已知AC⊥BC,BC=CC1.设AB1的中点为D,B1C∩BC1=E.
求证:
(1)DE∥平面AA1C1C;
(2)BC1⊥AB1.
证明
(1)由题意知,E为B1C的中点,又D为AB1的中点,
因此DE∥AC.
又因为DE⊄平面AA1C1C,AC⊂平面AA1C1C,
所以DE∥平面AA1C1C.
(2)因为棱柱ABC—A1B1C1是直三棱柱,
所以CC1⊥平面ABC.
因为AC⊂平面ABC,
所以AC⊥CC1.
又因为AC⊥BC,CC1⊂平面BCC1B1,
BC⊂平面BCC1B1,BC∩CC1=C,
所以AC⊥平面BCC1B1.
又因为BC1⊂平面BCC1B1,
所以BC1⊥AC.
因为BC=CC1,所以矩形BCC1B1是正方形,
因此BC1⊥B1C.
因为AC,B1C⊂平面B1AC,AC∩B1C=C,
所以BC1⊥平面B1AC.
又因为AB1⊂平面B1AC,所以BC1⊥AB1.
题型二 平面与平面垂直的判定与性质
典例(2018·
开封模拟)如图,在四棱锥P-ABCD中,AB⊥AC,AB⊥PA,AB∥CD,AB=2CD,E,F,G,M,N分别为PB,AB,BC,PD,PC的中点.
(1)求证:
CE∥平面PAD;
(2)求证:
平面EFG⊥平面EMN.
证明
(1)方法一
取PA的中点H,连接EH,DH.
因为E为PB的中点,
所以EH綊
AB.
又CD綊
AB,
所以EH綊CD.
所以四边形DCEH是平行四边形,所以CE∥DH.
又DH⊂平面PAD,CE⊄平面PAD,
所以CE∥平面PAD.
方法二
连接CF.
因为F为AB的中点,
所以AF=
又CD=
所以AF=CD.
又AF∥CD,所以四边形AFCD为平行四边形.
因此CF∥AD,又CF⊄平面PAD,AD⊂平面PAD,
所以CF∥平面PAD.
因为E,F分别为PB,AB的中点,所以EF∥PA.
又EF⊄平面PAD,PA⊂平面PAD,
所以EF∥平面PAD.
因为CF∩EF=F,故平面CEF∥平面PAD.
又CE⊂平面CEF,所以CE∥平面PAD.
(2)因为E,F分别为PB,AB的中点,所以EF∥PA.
又因为AB⊥PA,
所以EF⊥AB,同理可证AB⊥FG.
又因为EF∩FG=F,EF,FG⊂平面EFG,
所以AB⊥平面EFG.
又因为M,N分别为PD,PC的中点,
所以MN∥CD,又AB∥CD,所以MN∥AB,
所以MN⊥平面EFG.
又因为MN⊂平面EMN,所以平面EFG⊥平面EMN.
引申探究
1.在本例条件下,证明:
平面EMN⊥平面PAC.
证明 因为AB⊥PA,AB⊥AC,
且PA∩AC=A,PA,AC⊂平面PAC,
所以AB⊥平面PAC.
又MN∥CD,CD∥AB,所以MN∥AB,
所以MN⊥平面PAC.
又MN⊂平面EMN,
所以平面EMN⊥平面PAC.
2.在本例条件下,证明:
平面EFG∥平面PAC.
证明 因为E,F,G分别为PB,AB,BC的中点,
所以EF∥PA,FG∥AC,
又EF⊄平面PAC,PA⊂平面PAC,
所以EF∥平面PAC.
同理FG∥平面PAC.
又EF∩FG=F,
所以平面EFG∥平面PAC.
思维升华
(1)判定面面垂直的方法
①面面垂直的定义;
②面面垂直的判定定理(a⊥β,a⊂α⇒α⊥β).
(2)在已知平面垂直时,一般要用性质定理进行转化.在一个平面内作交线的垂线,转化为线面垂直,然后进一步转化为线线垂直.
跟踪训练(2018届河南中原名校质检)在四棱锥P—ABCD中,平面PAD⊥平面ABCD,AB∥CD,△PAD是等边三角形,已知AD=2,BD=2
,AB=2CD=4.
(1)设M是PC上一点,求证:
平面MBD⊥平面PAD;
(2)求四棱锥P—ABCD的体积.
(1)证明 在△ABD中,由勾股定理知AD⊥BD,
又平面PAD⊥平面ABCD,
平面PAD∩平面ABCD=AD,BD⊂平面ABCD,
所以BD⊥平面PAD,又BD⊂平面BDM,
所以平面MBD⊥平面PAD.
(2)解 如图,取AD的中点O,则PO⊥AD.
因为平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,PO⊂平面PAD,
所以PO⊥平面ABCD,
所以PO是四棱锥P—ABCD的高,且PO=2×
底面ABCD的面积是△ABD面积的
,即3
所以四棱锥P—ABCD的体积为
×
3
=3.
题型三 垂直关系中的探索性问题
典例 如图所示,平面ABCD⊥平面BCE,四边形ABCD为矩形,BC=CE,点F为CE的中点.
(1)证明:
AE∥平面BDF;
(2)点M为CD上任意一点,在线段AE上是否存在点P,使得PM⊥BE?
若存在,确定点P的位置,并加以证明;
若不存在,请说明理由.
(1)证明 连接AC交BD于点O,连接OF.
∵四边形ABCD是矩形,∴O为AC的中点.
又F为EC的中点,∴OF∥AE.
又OF⊂平面BDF,AE⊄平面BDF,
∴AE∥平面BDF.
(2)解 当点P为AE的中点时,有PM⊥BE,证明如下:
取BE的中点H,连接DP,PH,CH.
∵P为AE的中点,H为BE的中点,∴PH∥AB.
又AB∥CD,∴PH∥CD,
∴P,H,C,D四点共面.
∵平面ABCD⊥平面BCE,且平面ABCD∩平面BCE=BC,CD⊥BC,
CD⊂平面ABCD,∴CD⊥平面BCE.
又BE⊂平面BCE,∴CD⊥BE,
∵BC=CE,且H为BE的中点,
∴CH⊥BE.
又CH∩CD=C,且CH,CD⊂平面DPHC,
∴BE⊥平面DPHC.
又PM⊂平面DPHC,∴PM⊥BE.
思维升华对于线面关系中的存在性问题,首先假设存在,然后在该假设条件下,利用线面关系的相关定理、性质进行推理论证,寻找假设满足的条件,若满足则肯定假设,若得出矛盾的结论则否定假设.
跟踪训练如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,M为棱AC的中点.AB=BC,AC=2,AA1=
B1C∥平面A1BM;
AC1⊥平面A1BM;
(3)在棱BB1上是否存在点N,使得平面AC1N⊥平面AA1C1C?
如果存在,求此时
的值;
如果不存在,请说明理由.
(1)证明 连接AB1与A1B,两线交于点O,连接OM.
在△B1AC中,∵M,O分别为AC,AB1的中点,
∴OM∥B1C,
又∵OM⊂平面A1BM,B1C⊄平面A1BM,
∴B1C∥平面A1BM.
(2)证明 ∵侧棱AA1⊥底面ABC,BM⊂平面ABC,
∴AA1⊥BM,
又∵M为棱AC的中点,AB=BC,∴BM⊥AC.
∵AA1∩AC=A,AA1,AC⊂平面ACC1A1,
∴BM⊥平面ACC1A1,
∴BM⊥AC1.
∵AC=2,∴AM=1.
又∵AA1=
,∴在Rt△ACC1和Rt△A1AM中,
tan∠AC1C=tan∠A1MA=
∴∠AC1C=∠A1MA,
即∠AC1C+∠C1AC=∠A1MA+∠C1AC=90°
∴A1M⊥AC1.
∵BM∩A1M=M,BM,A1M⊂平面A1BM,
∴AC1⊥平面A1BM.
(3)解 当点N为BB1的中点,即
时,
平面AC1N⊥平面AA1C1C.
证明如下:
设AC1的中点为D,连接DM,DN.∵D,M分别为AC1,AC的中点,
∴DM∥CC1,且DM=
CC1.
又∵N为BB1的中点,∴DM∥BN,且DM=BN,
∴四边形BNDM为平行四边形,
∴BM∥DN,
∵BM⊥平面ACC1A1,∴DN⊥平面AA1C1C.
又∵DN⊂平面AC1N,
∴平面AC1N⊥平面AA1C1C.
立体几何证明问题中的转化思想
典例(12分)如图所示,M,N,K分别是正方体ABCD—A1B1C1D1的棱AB,CD,C1D1的中点.
(1)AN∥平面A1MK;
(2)平面A1B1C⊥平面A1MK.
思想方法指导
(1)线面平行、垂直关系的证明问题的指导思想是线线、线面、面面关系的相互转化,交替使用平行、垂直的判定定理和性质定理.
(2)线线关系是线面关系、面面关系的基础.证明过程中要注意利用平面几何中的结论,如证明平行时常用的中位线、平行线分线段成比例;
证明垂直时常用的等腰三角形的中线等.
(3)证明过程一定要严谨,使用定理时要对照条件,步骤书写要规范.
规范解答
证明
(1)
如图所示,连接NK.
在正方体ABCD—A1B1C1D1中,
∵四边形AA1D1D,DD1C1C都为正方形,
∴AA1∥DD1,AA1=DD1,
C1D1∥CD,C1D1=CD.[2分]
∵N,K分别为CD,C1D1的中点,
∴DN∥D1K,DN=D1K,
∴四边形DD1KN为平行四边形,[3分]
∴KN∥DD1,KN=DD1,∴AA1∥KN,AA1=KN,
∴四边形AA1KN为平行四边形,∴AN∥A1K.[4分]
又∵A1K⊂平面A1MK,AN⊄平面A1MK,
∴AN∥平面A1MK.[6分]
(2)如图所示,连接BC1.
AB∥C1D1,AB=C1D1.
∵M,K分别为AB,C1D1的中点,
∴BM∥C1K,BM=C1K,
∴四边形BC1KM为平行四边形,∴MK∥BC1.[8分]
在正方体ABCD—A1B1C1D1中,A1B1⊥平面BB1C1C,
BC1⊂平面BB1C1C,∴A1B1⊥BC1.
∵MK∥BC1,∴A1B1⊥MK.
∵四边形BB1C1C为正方形,∴BC1⊥B1C,[10分]
∴MK⊥B1C.
∵A1B1⊂平面A1B1C,B1C⊂平面A1B1C,
A1B1∩B1C=B1,∴MK⊥平面A1B1C.
又∵MK⊂平面A1MK,
∴平面A1B1C⊥平面A1MK.[12分]
1.若平面α⊥平面β,平面α∩平面β=直线l,则( )
A.垂直于平面β的平面一定平行于平面α
B.垂直于直线l的直线一定垂直于平面α
C.垂直于平面β的平面一定平行于直线l
D.垂直于直线l的平面一定与平面α,β都垂直
解析 对于A,垂直于平面β的平面与平面α平行或相交,故A错误;
对于B,垂直于直线l的直线与平面α垂直、斜交、平行或在平面α内,故B错误;
对于C,垂直于平面β的平面与直线l平行或相交,故C错误.D正确.
2.(2017·
深圳四校联考)若平面α,β满足α⊥β,α∩β=l,P∈α,P∉l,则下列命题中是假命题的为( )
A.过点P垂直于平面α的直线平行于平面β
B.过点P垂直于直线l的直线在平面α内
C.过点P垂直于平面β的直线在平面α内
D.过点P且在平面α内垂直于l的直线必垂直于平面β
解析 由于过点P垂直于平面α的直线必平行于平面β内垂直于交线的直线,因此也平行于平面β,因此A正确;
过点P垂直于直线l的直线有可能垂直于平面α,不一定在平面α内,因此B不正确;
根据面面垂直的性质定理,知选项C,D正确.
3.设α,β是两个不同的平面,l,m是两条不同的直线,且l⊂α,m⊂β( )
A.若l⊥β,则α⊥βB.若α⊥β,则l⊥m
C.若l∥β,则α∥βD.若α∥β,则l∥m
解析 选项A,∵l⊥β,l⊂α,∴α⊥β,A正确;
选项B,α⊥β,l⊂α,m⊂β,l与m的位置关系不确定;
选项C,∵l∥β,l⊂α,∴α∥β或α与β相交;
选项D,∵α∥β,l⊂α,m⊂β,此时,l与m的位置关系不确定.故选A.
中原名校联盟联考)已知m和n是两条不同的直线,α和β是两个不重合的平面,下面给出的条件中一定能推出m⊥β的是( )
C.m∥n且n⊥βD.m⊥n且n∥β
解析 对于选项A,由α⊥β且m⊂α,可得m∥β或m与β相交或m⊂β,故A不成立;
对于选项B,由α⊥β且m∥α,可得m⊂β或m∥β或m与β相交,故B不成立;
对于选项C,由m∥n且n⊥β,可得m⊥β,故C正确;
对于选项D,由m⊥n且n∥β,可得m∥β或m与β相交或m⊂β,故D不成立.故选C.
5.(2018届江西南昌摸底)
如图,在四棱锥P—ABCD中,△PAB与△PBC是正三角形,平面PAB⊥平面PBC,AC⊥BD,则下列结论不一定成立的是( )
A.PB⊥ACB.PD⊥平面ABCD
C.AC⊥PDD.平面PBD⊥平面ABCD
解析
取BP的中点O,连接OA,OC,则BP⊥OA,BP⊥OC,又因为OA∩OC=O,所以BP⊥平面OAC,所以BP⊥AC,故选项A正确;
又AC⊥BD,BP∩BD=B,得AC⊥平面BDP,又PD⊂平面BDP,所以AC⊥PD,平面PBD⊥平面ABCD,故选项C,D正确,故选B.
6.如图所示,直线PA垂直于⊙O所在的平面,△ABC内接于⊙O,且AB为⊙O的直径,点M为线段PB的中点.现有结论:
①BC⊥PC;
②OM∥平面APC;
③点B到平面PAC的距离等于线段BC的长.其中正确的是( )
A.①②B.①②③
C.①D.②③
解析 对于①,∵PA⊥平面ABC,∴PA⊥BC,
∵AB为⊙O的直径,∴BC⊥AC,
∵AC∩PA=A,∴BC⊥平面PAC,
又PC⊂平面PAC,∴BC⊥PC;
对于②,∵点M为线段PB的中点,∴OM∥PA,
∵PA⊂平面PAC,OM⊄平面PAC,∴OM∥平面PAC;
对于③,由①知BC⊥平面PAC,∴线段BC的长即是点B到平面PAC的距离,故①②③都正确.
7.如图,已知PA⊥平面ABC,BC⊥AC,则图中直角三角形的个数为________.
答案 4
解析 ∵PA⊥平面ABC,AB,AC,BC⊂平面ABC,
∴PA⊥AB,PA⊥AC,PA⊥BC,则△PAB,△PAC为直角三角形.由BC⊥AC,且AC∩PA=A,得BC⊥平面PAC,从而BC⊥PC,因此△ABC,△PBC也是直角三角形.
8.(2018·
洛阳模拟)如图所示,在四棱锥P-ABCD中,PA⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足________时,平面MBD⊥平面PCD.(只要填写一个你认为正确的条件即可)
答案 DM⊥PC(或BM⊥PC等)
解析 ∵PA⊥底面ABCD,∴BD⊥PA,连接AC,则BD⊥AC,且PA∩AC=A,∴BD⊥平面PAC,∴BD⊥PC.
∴当DM⊥PC(或BM⊥PC)时,即有PC⊥平面MBD,
而PC⊂平面PCD,∴平面MBD⊥平面PCD.
9.如图,∠BAC=90°
,PC⊥平面ABC,则在△ABC和△PAC的边所在的直线中,与PC垂直的直线有________;
与AP垂直的直线有________.
答案 AB,BC,AC AB
解析 ∵PC⊥平面ABC,∴PC垂直于直线AB,BC,AC;
∵AB⊥AC,AB⊥PC,AC∩PC=C,∴AB⊥平面PAC,∴与AP垂直的直线是AB.
10.如图,在直三棱柱ABC-A1B1C1中,侧棱长为2,AC=BC=1,∠ACB=90°
,D是A1B1的中点,F是BB1上的动点,AB1,DF交于点E,要使AB1⊥平面C1DF,则线段B1F的长为________.
答案
解析 设B1F=x,
因为AB1⊥平面C1DF,DF⊂平面C1DF,
所以AB1⊥DF.
由已知可得A1B1=
设Rt△AA1B1斜边AB1上的高为h,
则DE=
h.
又
2×
h
所以h=
,DE=
在Rt
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 直线 平面 垂直 判定 性质