最新人教版九年级上册数学第二十五章教案教学反思Word文档格式.docx
- 文档编号:17865103
- 上传时间:2022-12-11
- 格式:DOCX
- 页数:25
- 大小:251.63KB
最新人教版九年级上册数学第二十五章教案教学反思Word文档格式.docx
《最新人教版九年级上册数学第二十五章教案教学反思Word文档格式.docx》由会员分享,可在线阅读,更多相关《最新人教版九年级上册数学第二十五章教案教学反思Word文档格式.docx(25页珍藏版)》请在冰豆网上搜索。
【教学说明】教师提出问题,也可事先做好签,请学生们动手操作试验,感知事件发生的多种情况.经过操作试验思考回答,让学生分析阐述自己的观点,初步感知事件发生的情况类别.
(1)每次抽签的结果不一定相同,序号1、2、3、4、5都有可能抽到,共有5种可能的结果,但事先不能预料一次抽签会抽到哪种结果.
(2)抽到的序号一定小于6.
(3)抽到的序号一定不是0.
(4)抽到的序号可能是1,也可能不是1,事先无法确定.
探究2小伟掷一个质地均匀的正方体骰子,骰子的6个面上分别刻有1到6的点数,请考虑以下问题:
掷一次骰子,在骰子向上的一面上:
(1)可能出现哪些点数?
(2)出现的点数大于0吗?
(3)出现的点数会是7吗?
(4)出现的点数会是4吗?
【教学说明】教师给出问题,学生合作交流,进一步体会事件发生的情况,是一定发生,或一定不发生,还是可能发生.
1.从上述探究中可知,有些事件发生与否是可以事先确定的,有些事件发生与否,则是不能事先确定的.
【教学说明】教师引导学生归纳总结事件发生的三种情况,增强学生对事件发生可能性的认识.引导学生理解“在一定条件下”的意义.
【归纳结论】在一定条件下,有些事件必然会发生(如:
标准大气压下,加热到100℃,水沸腾),这样的事件称为必然事件.相反的,有些事件必然不会发生(如:
三角形的内角和为360°
),这样的事件称为不可能事件.
在一定条件下,可能发生也可能不发生的事件(如:
探究1中序号为2,探究2中出现点数为4)称为随机事件.
2.请同学们举生活中的实例说明必然事件、不可能事件、随机事件.
【教学说明】学生结合定义列举,并能稍作阐述,教师讲评、归纳、鼓励.
3.随机事件发生的可能性有大小.
探究试验:
袋子中有4个黑球,2个白球,这些球的形状、大小、质地等完全相同.
在看不到球的情况下,随机的从袋子中摸出一个球.
(1)是白球还是黑球?
(2)经过多次试验,摸出的黑球和白球哪个次数多?
说明了什么问题?
【教学说明】教师提出问题,引导学生试验,学生通过试验,观察结果,思考并得出结论,体会随机事件发生的可能性有大小.
【归纳结论】一般地,随机事件发生的可能性有大小,不同的随机事件发生的可能性的大小有可能不同.
三、运用新知,深化理解
1.下列事件中,属必然事件的是()
A.男生的身高一定超过女生
B.方程4x2=0有实数解
C.明天数学考试小明一定得满分
D.两个无理数相加一定是无理数
2.下列事件中,哪些是随机事件?
哪些是必然事件?
哪些是不可能事件?
说说你的理由.
(1)掷一枚骰子,6点朝上.
(2)367人中至少有2人出生日期相同.
(3)小明想用长度为10cm,20cm,30cm的小木条,首尾相接,做一个三角形.
(4)小明买福利彩票,中500万奖金.
【教学说明】上述题目较为简单,可让学生自主完成,教师再选派几名学生作出回答即可.
【答案】
1.B【解析】A.男生的身高可能超过女生,也可能不超过女生,生活中这样的现象随处可见,故它是随机事件.B.方程4x2=0的Δ=0,故它有两个相等的实数根,所以是必然事件.C.小明可能得满分,也可能不会,故为随机事件.
D.如-
与
相加得0是有理数,
与2
相加得3
是无理数,故它是随机事件.
2.
(1)随机事件,因为一枚骰子有6个面,其中一个面是6点.
(2)必然事件,因为一年有365天或366天,所以367人必有两个生日相同.
(3)不可能事件,因为10+20=30,而三角形任意两边之和大于第三边.
(4)随机事件,因为福利彩票中包含有500万的奖项,所以只要买福利彩票是有可能中500万奖金的.
四、师生互动,课堂小结
本堂课你学到了哪些有关随机事件的知识?
你有哪些收获和体会?
说说看.
【教学说明】在学生回顾与反思本堂课的学习过程中,进一步完善认知,师生共同归纳总结.
1.布置作业,从教材“习题25.1”中选取.
2.完成练习册中本课时练习的“课后作业”部分.
通过这些生动的、有趣的实例,自然地引出必然事件和不可能事件;
其次,必然事件和不可能事件相对于随机事件来说,特征比较明显,学生容易判断,把它们首先提出来,符合由浅入深的理念,容易激发学生的学习积极性.“抽签”这个活动是学生容易理解或亲身经历过的,操作简单省时,又具有很好的经验性,最主要的是活动中含有丰富的随机事件,激发学生的探知欲.
25.1.2概率
1.了解什么是概率,认识概率是反映随机事件发生可能性大小的量.
2.了解频率可以看作为事件发生概率的估计值,了解必然事件和不可能事件的概率.
3.理解概率反映可能性大小的一般规律.
通过试验得出和理解概率的意义,正确鉴别有限等可能性事件,了解简单事件发生概率的计算方法.
通过分析探究简单随机事件的概率,培养学生良好的动脑习惯,提高运用数学知识解决实际问题的意识,激发学习兴趣,体验数学的应用价值.
1.正确理解有限等可能性.
2.用概率定义求简单随机事件的概率.
正确理解有限等可能性,准确计算随机事件的概率.
一、情境导入,初步认识
请同学讲“守株待兔”的故事.
问:
(1)这是个什么事件?
(2)这个事件发生的可能性有多大?
引入课题.
【教学说明】通过熟悉的故事激起学生的学习兴趣,同时结合上节课所学,思考如何衡量一个随机事件发生的可能性的大小,从而引出课题.
探究
试验1:
从分别标有1、2、3、4、5号的5根纸签中随机地抽取一根,回答下列问题:
①抽出的号码有多少种情况?
②抽到1的可能性与抽到2的可能性一样吗?
它们的可能性是多少呢?
【讨论结果】①抽出的号码有1、2、3、4、5等5种可能的结果.
②由于纸签的形状、大小相同,又是随机抽取的,所以每个号码被抽到的可能性大小相等,抽到一个号码即5种等可能的结果之一发生,于是:
1/5就表示每一个号码被抽到的可能性的大小.
【教学说明】通过本试验,帮助学生理解、体会在一次试验中,可能出现的结果为有限多个,并且每种结果发生的可能性相同.
试验2:
投一枚骰子,向上一面的点数有多少种可能?
向上一面的点数是1或3的可能性一样吗?
是多少呢?
【教学说明】学生通过试验,交流得出结论,感知在这个过程中,每种结果的可能性,在一次试验中,可能结果只有有限种.
思考
(1)概率是从数量上刻画一个随机事件发生的可能性的大小,根据上述两个试验分析讨论,你能给概率下定义吗?
(2)以上两个试验有什么共同特征?
【讨论结果】
(1)一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值称为随机事件A发生的概率,记作:
P(A).
(2)以上两个试验有两个共同特征:
①一次试验中,可能出现的结果有有限多个.
②一次试验中,各种结果发生的可能性相等.
【教学说明】对于具有上述特点的试验,我们常从事件所包含的各种可能的结果在全部可能的试验结果中所占的比分析出事件的概率.
(1)根据上面的理解,你认为问题2中向上的一面为偶数的概率是多少?
(2)像上述试验,可列举的有限等可能事件的概率,可以怎样表达事件的概率?
(1)“向上一面为偶数”这个事件包括2、4、6三种可能结果,在全部6种可能的结果中所占的比为3/6=1/2.∴P(向上一面为偶数)=1/2.
(2)一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性相等,事件A包含其中的m种结果,那么事件A发生的概率P(A)=m/n.
(3)请同学们思考P(A)的取值范围是多少?
分析:
∵m≥0,n>
0,∴0≤m≤n,∴0≤mn≤1,即0≤P(A)≤1.
(4)P(A)=1,P(A)=0各表示什么事件呢?
【讨论结果】当A为必然事件时,P(A)=1.
当A为不可能事件时,P(A)=0.
由此可知:
事件发生的可能性越大,它的概率越接近于1;
反之,事件发生的可能性越小,它的概率越接近于0,如下图:
三、典例精析,掌握新知
例1掷一个骰子,观察向上一面的点数,求下列事件的概率:
(1)点数为2;
(2)点数为奇数;
(3)点数大于2且小于5.
(1)掷一个质地均匀的骰子,向上一面的点数共有几种情况?
(2)点数为2时有几种可能?
点数为奇数有几种可能?
点数大于2且小于5有几种可能呢?
【教学说明】例1是教材的例1,以此规范简单事件的概率求值的一般步骤,并在运用中进一步体会概率的意义.教师板书完整的解题过程.
例2如图所示是一个转盘,转盘分成7个相同的扇形,颜色分为红、绿、黄三种颜色,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作向右的扇形).求下列事件的概率:
(1)指针指向红色;
(2)指针指向红色或黄色;
(3)指针不指向红色.
①指针停止后所指向的位置是否是有限等可能性事件?
为什么?
②指针指向红色有几种可能?
③指针指向红色或黄色是什么意思?
④指针不指向红色等价于什么说法?
【教学说明】教师引导学生分析问题,学生通过对问题的思考和交流,写出完整的解题过程,这个转盘问题,实际上是几何概率的模型,是通过面积的大小关系来刻画概率的.
例3教材第133页例3.
第二步怎样走取决于踩在哪部分遇到地雷可能性的大小,因此,问题的关键是分别计算在两个区域的任何一个方格内踩中地雷的概率并比较大小就可以了.
问1:
若例3中,小王在游戏开始时踩中的第一个格上出现了标号1,则下一步踩在哪一区域比较安全?
答案:
一样,每个区域遇雷的概率都是1/8.
问2:
谁能重新设计,通过改换雷的总数,使得下一步踩在A区域合适?
并计算说明.
这是开放性问题,答案不唯一,仅举一例供参考:
把雷的总数由10颗改为31颗,则:
A区域的方格共有8个,标号3表示在这8个方格中有3个方格各有1颗地雷,因此踩A区域遇雷概率是:
3/8
B区域中共有:
9×
9-8-1=72(个)小方格,其中有31-3=28(个)方格内各藏有1颗地雷,因此踩B区域的任一方格遇到地雷的概率是:
而
,∴踩A区域遇雷的可能性小于踩B区域遇雷的可能性.
【教学说明】这个问题对于有游戏经验的同学来说容易理解题意,若是没有经验就不是很容易理解的,教师要引导学生理解题意,进而分析问题.对于第二步应怎样走关键只要分别计算两个区域内遇雷的概率,这是学生解决这一问题的关键所在.当学生完成问题后,顺势提出后面的2个问题,从正、反两方面对题目进行变式练习.
四、运用新知,深化理解
1.“从一布袋中随机摸出一球恰是黑球的概率为1/3”的意思是()
A.摸球三次就一定有一次摸到黑球
B.摸球三次就一定有两次不能摸到黑球
C.如果摸球次数很多,那么平均每摸球三次就有一次摸到黑球
D.布袋中有一个黑球和两个别的颜色的球
2.某班共有41名同学,其中有2名同学习惯用左手写字,其余同学都习惯用右手写字,老师随机请1名同学解答问题,习惯用左手写字的同学被选中的概率是()
A.0B.1/41C.2/41D.1
3.要在一只口袋中装入若干个形状与大小都完全相同的球,使得从袋中摸到红球的概率为1/5,四位同学分别采用了下列装法,你认为他们中装错的是()
A.口袋中装入10个小球,其中只有两个是红球
B.装入1个红球,1个白球,1个黄球,1个蓝球,1个黑球
C.装入红球5个,白球13个,黑球2个
D.装入红球7个,白球13个,黑球2个,黄球13个
4.从一副未曾启封的扑克牌中取出1张红桃,2张黑桃的牌共3张,洗匀后,从这3张牌中任取1张牌,恰好是黑桃的概率是()
A.1/2B.1/3C.2/3D.1
5.在四张完全相同的卡片上,分别画上圆、矩形、等边三角形、等腰梯形,现从中随机抽取1张,是中心对称图形的概率是______.
6.下列事件的概率,哪些能作为等可能性事件的概率求?
哪些不能?
(1)抛掷一枚图钉,钉尖朝上.
(2)随意地抛一枚硬币,背面向上与正面向上.
7.摸彩券100张,分别标有1,2,3,……100的号码,只有摸中的号码是7的倍数的彩券才有奖,小明随机地摸出一张,那么他中奖的概率是多少?
8.从一副扑克牌中找出所有红桃的牌共13张,从这13张牌中任意抽取一张,求下列事件的概率.
(1)抽到红桃5;
(2)抽到花牌J、Q、K中的一张;
(3)若规定花牌点为0.5,其余牌按数字记点,抽到点数大于5的可能性有多大?
【教学说明】上述练习一方面从正反对照的角度深化了对有限等可能的理解,进一步明确了古典概型的使用条件;
另一方面还能帮助学生熟练掌握有限等可能的随机事件概率的计算方法,教师应先让学生自主完成,再进行评讲.
【答案】1.C
2.C【解析】所有可能结果数是41,而每个学生被提问的可能性相等,其中有2个学生是习惯用左手写字,故习惯用左手写字的同学被选中的概率为2/41.
3.C4.C
5.1/2【解析】圆、矩形是中心对称图形,所以P(中心对称图形)=2/4=1/2.
6.
(1)不能
(2)能
7.7/50(提示:
本题的关键是找公式P(A)=m/n中的m:
从7的1倍到7的14倍,一共14个数.)
8.
(1)因为13张牌中只有一张红桃5,故抽到红桃5的概率为1/13;
(2)13张牌中有1张J、1张Q、1张K,共3张花牌,故抽到一张花牌的概率为3/13;
(3)13张牌中点数大于5的牌共有6、7、8、9、10共5张,故抽到点数大于5的牌的概率为5/13.
五、师生互动,课堂小结
本堂课你学到了哪些概率知识?
你有什么疑问和困惑?
1.通过抽签,用学生喜欢的扑克牌和掷骰子试验导入新课,吸引学生迅速进入状态,让学生充分认识概率的意义;
由学生自主探索、合作交流此类型概率的求法,利用学生掌握本节课的知识,学生在解决问题的过程中,发展了思维能力,增强思维的缜密性,并且培养了学生解决问题的信心.
2.在概率的古典定义基础上,教科书给出了概率的取值范围为0-1的性质,事件发生的可能性越大,它的概率越接近1,其中必然事件的概率为1,不可能事件的概率为0,两个确定事件可以看作特殊的随机事件.学生在学习例2时,应注意三种颜色并非三种可能,要求学生去仔细体会.
25.2用列举法求概率
第1课时用列表法求概率
初步掌握直接列举法计算一些简单事件的概率的方法.
通过用列举法求简单事件的概率的学习,使学生在具体情境中分析事件.计算其发生的概率,解决实际问题.
体会概率在生活实践中的应用,激发学习数学的兴趣,提高分析问题的能力.
熟练掌握直接列举法计算简单事件的概率.
正确理解和区分一次试验中包含两步或两个因素的试验.
能不重不漏而又简洁地列出所有可能的结果.
1.复习回顾①概率的意义;
②对于试验结果是有限等可能的事件的概率的求法.
2.多媒体展示扫雷游戏,引入课题.
二、典例精析,掌握新知
我们在日常生活中,常常会用掷硬币的方式来决定游戏的胜负,下列请同学们思考下面的这种游戏规则是否公平.
例老师向空中抛掷两枚同样的硬币,如果落地后一反一正,老师赢;
如果落地后都只正面时,同学们赢,请问你们觉得这个游戏公平吗?
【教学说明】对“游戏是否公平”实际是看两方出现的概率大小如何.所以解决本题的关键是,分别计算出“一正一反”与“都是正面”的概率各是多少并比较,这里教师要引导学生条理清楚地列举出所有可能的结果,学生思考交流.
解:
我们利用表格的形式,列举出所有可能的结果.
∴这游戏不公平.
“同时掷两枚硬币”与“先后掷一枚硬币”这两种试验的所有可能一样吗?
一样.
1.在“幸运52”栏目中,曾有一种竞猜游戏,游戏规则是:
20个商标牌中,有5个商标牌背面注明了一定的奖金,其余商标牌的背面是一张“哭脸”,若翻到“哭脸”就不获奖,参与这个游戏的观众有三次翻牌的机会,且翻过的牌不能再翻,有一位观众已翻牌两次,一次获奖,一次不获奖,那么这位观众第三次翻牌获奖的概率是()
2.从甲、乙、丙三人中任意选两名代表参加会议,甲被选中的概率为()
3.在一个布袋里装有红、白、黑三种颜色的玻璃球各一个,它们除颜色外,没有其他区别,先从布袋中取出一个球,放回袋中并搅匀,再从袋中取一个球,则两次取出的恰好都是红球的概率是_____.
4.袋子中装有红、绿各一个小球,除颜色外无其他差别,随机摸出1个小球后放回,再随机摸出一个.求下列事件的概率;
(1)第一次摸到红球,第二次摸到绿球;
(2)两次都摸到相同颜色的小球;
(3)两次摸到的球中有一个绿球和一个红球.
5.在“妙手推推推”的游戏中,主持人出示了一个9位数:
258396417,让参与者猜商品价格,被猜的价格是一个4位数,也就是这个9位数中从左到右连在一起的某4个数字.如果参与者不知道商品的价格,从这些连在一起的所有4位数中,任意猜一个,求他猜中该商品的概率.
【教学说明】本练习着重演练用列举法求简单事件的概率,可先让学生自主完成,再选派几名学生作答,教师再予以评点.
【答案】1.B【解析】所有剩下的商标共20-2=18个,其中有奖的有5-1=4个,所以它第三次翻牌获奖的概率为4/18=2/9.
2.C【解析】分析所有的可能结果为(甲、乙),(甲,丙),(乙,甲),(乙,丙),(丙,甲),(丙,乙).事件A包含的结果为(甲、乙),(甲,丙),(乙,甲),(丙,甲)共4个,故P(A)=4/6=2/3.
3.1/9【解析】所有可能出现的结果有(红,红)、(红,白)、(红,黑)、(白,红)、(白,白)、(白,黑)、(黑,红)、(黑,白)、(黑,黑)共有9种,所以P(都是红球)=1/9.
4.
(1)1/4
(2)1/2(3)1/2
5.所有可能结果有:
2583,5839,8396,3964,9641,6417,其中只有一种是该商品的价格,所以猜中该商品的概率为1/6.
1.本堂课你学到了什么知识,有哪些收获?
2.你能不重不漏地列举出事件发生的所有可能吗?
3.你能正确求出P(A)=m/n吗?
【教学说明】围绕上述问题,教师引导学生交流归纳.用列举法求简单事件概率的一般步骤,重点是要让学生掌握方法.
1.布置作业:
从教材“习题25.2”中选取.
1.本节课通过以学生喜闻乐见的扫雷、掷硬币等游戏为载体,充分调动了学生的学习欲望,将学生摆在了真正的主体位置上,充分发挥了他们的主观能动性,从而让学生在趣味中掌握本节课的知识.生活中有许多有关概率的问题,本节课的学习亦能让学生尝试用概率的知识去解决生活中的问题,从而体会到概率知识在生活中的应用价值.
2.本节课还通过普通列举法与列表法,对找出包含两个因素的试验结果的对比,让学生感受到列表法的作用与长处,使学生易于接受知识.
3.教师引导学生交流归纳知识点,看学生能否会不重不漏地列举出事件发生的所有可能,能否找出事件A中包含几种可能的结果,并能求P(A),教学时要重点突出方法.
第2课时用画树状图法求概率
理解并掌握列表法和树状图法求随机事件的概率.并利用它们解决问题,正确认识在什么条件下使用列表法,什么条件下使用树状图法.
经历用列表法或树状图法求概率的学习,使学生明白在不同情境中分析事件发生的多种可能性,计算其发生的概率,解决实际问题,培养学生分析问题和解决问题的能力.
通过求概率的数学活动,体验不同的数学问题采用不同的数学方法,但各种方法之间存在一定的内在联系,体会数学在现实生活中应用价值,培养缜密的思维习惯和良好的学习习惯.
会用列表法和树状图法求随机事件的概率.
区分什么时候用列表法,什么时候用树状图法求概率.
列表法是如何列表,树状图的画法.
列表法和树状图的选取方法.
播放视频《田忌赛马》,提出问题,引入新课.
齐王和他的大臣田忌均有上、中、下马各一匹,每场比赛三匹马各出场一次,共赛三次,以胜的次数多者为赢.已知田忌的马比齐王的马略逊色,即:
田忌的上马不敌齐王的上马,但胜过齐王的中马;
田忌的中马不敌齐王的中马,但胜过齐王的下马;
田忌的下马不敌齐王的下马.田忌屡败后,接受了孙膑的建议,结果两胜一负,赢了比赛.
(1)你知道孙膑给的是怎样的建议吗?
(2)假如在不知道齐王出马顺序的情况下,田忌能赢的概率是多少呢?
【教学说明】情境激趣,在最短时间内激起学生的求知欲和探索的欲望.
1.用列表法求概率
课本第136页例2.
由于每个骰子有6种可能结果,所以2个骰子出现的可能结果就会有36种.我们用怎样的方法才能比较快地既不重复又不遗漏地求出所有可能的结果呢?
以第一个骰子的点数为横坐标,第二个骰子的点数为纵坐标,组成平面直角坐标系第一象限的一部分,列出表格并填写.
【教学说明】教师引导学生列表,使学生动手体会如何列表,指导学生体会列表法对列举所有可能的结果所起的作用,总结并解答.指导学生如何规范的应用列表法解决概率问题.
由例2可总结得:
当一个事件要涉及两个因素并且可能出现的结果数目较多时,通常采用列表法.
运用列表法求概率的步骤如下:
①列表;
②通过表格确定公式中m、n的值;
③利用P(A)=m/n计算事件的概率.
思考把“同时掷两个骰子”改为“把一个骰子掷两次”,还可以使用列表法来做吗?
答:
“
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新人 九年级 上册 数学 第二 十五 教案 教学 反思