成都理工大学电力系统自动化实验报告文档格式.docx
- 文档编号:17775204
- 上传时间:2022-12-10
- 格式:DOCX
- 页数:27
- 大小:140.51KB
成都理工大学电力系统自动化实验报告文档格式.docx
《成都理工大学电力系统自动化实验报告文档格式.docx》由会员分享,可在线阅读,更多相关《成都理工大学电力系统自动化实验报告文档格式.docx(27页珍藏版)》请在冰豆网上搜索。
■
图中用Ug和Us表示发电机电压和系统电压的相量,当心不等于零时,Ug和Us之
间的相角差(滑差P8=磔,将随时间t不断改变。
假定以Us为参考相量保持不动,则Ug将以角速度3d作逆时针旋转。
因而脉动电压Ud的瞬时值也在不断变化
(a)(b)8=0(C)6-n/2(d)6=n
脉动电压不仅反映Ug和Us的相角差特性,而且与它们的幅值有关,所以可以利用自动装置检测滑差电压,判断准同期并网条件,完成发电机组的准同期并网操作。
因此研
究滑差电压的特性是非常必要的。
三、实验内容与步骤
根据发电机电压信号和系统电压信号测试准同期条件,当电压幅值和频率有变化
时,观测脉动电压Ud波形的变化。
实验步骤如下:
实验准备:
选定实验台上面板的旋钮开关的位置:
将“励磁方式”旋钮开关打到“手动”位
置;
将“励磁电源”旋钮开关打到“他励”位置;
将“同期方式”旋钮开关打到“自动”位置。
1.发电机组起励建压,使发电机端电压为400V(操作步骤见第一章)
2.检查微机准同期各整定项是否为附录八中表4-8-2的设置(出厂设置)。
如果不符,
则进行相关修改。
3.波形测试
⑴在综合自动化控制柜上安放双踪数字示波器,电源接在示波器位置平架后部的单
相电源插座上(已经通过隔离变压器隔离市电),将一个探头的正极接入“发电机电
压”测试孔,负极接入“参考地”测试孔,另一个探头的正极接入“系统电压”测试孔,观测系统和发电机电压波形,以及二者相位差的变化,记录实验波形。
⑵上述实验完成后,将示波器一路探头拔下,将另一路探头的正极接入“发电机电压”测试孔上,负极接入“系统电压”测试孔,此时示波器观测的波形为脉动电压波形。
⑶按下THLWL-3型微机调速装置上的“+”键和“―”键,调节转速,使n=1470
rpm;
调节实验台上的“手动调压”旋钮,调节励磁,使Ug=390V,此时按下微机准同
期装置面板上的“投入”键,通过双踪数字示波器可观测到脉动电压波形。
待波形稳定后,
捕捉一个周期内完整的脉动电压波形,测量脉动电压的频率,将其与当前频差比较,确定两者的关系。
观察脉动电压幅值达到最小值的时刻所对应的整步表指针位置和微机准同期装置旋转灯灯光位置。
根据捕捉到的波形,绘制脉动电压波形图。
注:
微机准同期装置测量的系统电压和发电机电压均为经过电压互感器后的电压,电压
互感器变比400:
100
4.数据全部记录完成后,发电机组停机(见第一章)5
相电源”和“总电源”(空气开关向下扳至OFF)将示波器的各探头从准同期装置上拔下,再拔擦电源插头,整理好示波器,以备下次使
53
台
和
控
实验心得:
通过此次实验,使我对电力系统自动化有了一定的感性和理性认识,同时对自动准同期并列的操作步骤和需要调节的参数和方法,更加深入掌握了准同期并列的条件,为之后的实验打下了基础,实践与理论相结合,让我们对电力系统自动化有更深该的认识。
实验二典型方式下的同步发电机起励实验
1.了解同步发电机的几种起励方式,并比较它们之间的不同之处。
2.分析不同起励方式下同步发电机起励建压的条件。
同步发电机的起励方式有三种:
恒发电机电压Ug方式起励、恒励磁电流Ie方式起励和
恒给定电压UR方式起励。
其中,除了恒UR方式起励只能在他励方式下有效外,其余两种
方式起励都可以分别在他励和自并励两种励磁方式下进行。
恒Ug方式起励,现代励磁调节器通常有“设定电压起励”和“跟踪系统电压起励”两
种起励方式。
设定电压起励,是指电压设定值由运行人员手动设定,起励后的发电机电压稳
定在手动设定的给定电压水平上;
跟踪系统电压起励,是指电压设定值自动跟踪系统电压,人
工不能干预,起励后的发电机电压稳定在与系统电压相同的电压水平上,有效跟踪范围为
85%〜115%额定电压;
“跟踪系统电压起励”方式是发电机正常发电运行默认的起励方
式,可以为准同期并列操作
创造电压条件,而“设定电压起励”方式通常用于励磁系统的调试试验。
恒Ie方式起励,也是一种用于试验的起励方式,其设定值由程序自动设定,人工不能
干预,起励后的发电机电压一般为20%额定电压左右。
恒Ur(控制电压)方式只适用于他励励磁方式,可以做到从零电压或残压开始人工调节逐
渐增加励磁而升压,完成起励建压任务。
三、实验内容与步骤常规励磁装置起励建压在第一章实验已做过,此处以微机励
磁为主。
1.
选⑴参照第一章中的“发电机组起励建压”步骤操作。
定⑵观测控制柜上的“发电机励磁电压”表和“发电机励磁电流”表的指针摆动。
实2.选定“微机控制”,“自励丁恒Ug”和“恒Ug预定值”为400V。
操作步骤同实
上
的
验1。
3.选定“微机控制”,“他励”,“恒Ie”和“恒Ie预定值”为1400mA。
操作步骤同实验1。
4.选定“微机控制”,“自励”,“恒Ie”和“恒Ie预定值”为1400mA。
5.选定“微机控制”,“他励”,“恒Ur”和“恒Ur预定值”为5000mV。
通过对每次的分组合作,不但让我们清楚了同步发电机的起励方式和需要的条件,了解了起励的步骤和调节参数,同时对于我们团队协作得到了很大的提高。
实验三励磁调节器控制方式及其相互切换实验
1,了解微机励磁调节器的几种控制方式及其各自特点。
2.通过实验理解励磁调节器无扰动切换的重要性。
励磁调节器具有四种控制方式:
恒发电机电压Ug,恒励磁电流Ie,恒给定电压Ur和恒无功Q。
其中,MUr为开环控制,而恒Ug,恒Ie和恒Q三种控制方式均采用PID控制,PID控制原理框图如图2-3-1所示,系统由PID控制器和被控对象组成,PID算法可表示为:
e(t)r(t)-c(t)
u(t)Kp{e(t)1/Tie(t)dtTdd[e⑴]/dt}
其中:
u(t)—调节计算的输出;
Kp—比例增益;
丁一积分常数;
Td—微分常数。
2-3-1
2-3-2
因上述算法用于连续模拟控制,而此处采用采样控制,故对上述两个方程离散化,当采
样周期T很小时,用一阶差分代替一阶微分,用累加代替积分,则第n次采样的调节量为:
u(n)Kp{e(n)T/1e(i)
式中:
uo—偏差为0时的初值。
则第n-1次采样的调节量为:
u(n-1)Kp{e(n-1)T/Tie(i)
Td/T[e(n)-e(n-1)]}u
Td/T[e(n-1)-e(n-2)]}u°
2-3-3
K一初分系数,K
K
;
Kl微分系数,K
DK
T1PTDP
每种控制方式对应一套PID参数(Kp、K和Kd)可根据要求设置,设置原则:
比例系数加大,系统响应速度快,减小误差,偏大,振荡次数变多,调节时间加长,太大,系统趋于不稳定;
积分系数加大,可提高系统的无差度,偏大,振荡次数变多;
微分系数加大,可
使超调量减少,调节时间缩短,偏大时,超调量较大,调节时间加长。
为了保证各控制方式间能无扰动的切换,本装置采用了增量型PID算法。
实
验准备:
以下内容均由THLWL-3微机励磁装置完成,励磁采用“它励”;
系统与发电机组间的线路采用双回线。
具体操作如下:
⑴合上控制柜上的所有电源开关;
然后合上实验台上的所有电源开关。
合闸顺序:
先总开关,后三相开关,再单相开关。
⑵选定实验台面板上的旋钮开关的位置:
将“励磁方式”旋钮开关打到“微机控制”位置;
将“励磁电源”旋钮开关打到“他励”位置。
⑶使实验台上的线路开关QF1,QF3,QF2,QF6,QF7和QF4处于“合闸”状态,QF5处于“分闸”状态。
1.恒Ug方式
⑴设置THLWL-3微机励磁装置的“励磁调节方式”为“,值Ug;
进入主菜单,选定“系统设置”,接着按下“确认”键,进入子菜单,然后不断按下“▼”键,翻页找到子菜单“励磁调节方式”,再次按下“确认”键。
最后按下“+”键,选择“恒Ug”方式。
⑵设置THLWL-3微机励磁装置的“恒Ug预定值”为“400V;
具体操作同上。
⑶发电机组起励建压(操作见第一章),使原动机转速为1500rmp,发电机电压为额定电压400V。
(4)发电机组不并网,通过调节原动机转速来调节发电机电压的频率,频率变化在
45Hz〜55Hz之间,频率数值可从THLWL-3微机励磁装置读取。
具体操作:
按下THLWT-3微机调速装置面板上的“+”键或“―”键来调节原动机的转速。
⑸从THLWL-3微机励磁装置读取发电机电压、励磁电流和给定电压的数值并记录到
表
3-2-3-1中。
表3-2-3-1
序号
发电机频率fg(Hz)
发电机电压
Ug(V)
励磁电流
Ie(A)
励磁电压
Ue(V)
1
47.0
398.4
1.349
3.92
2
48.0
397.5
1.297
4.00
49.0
398.9
1.244
4.05
4
50.0
400.0
1.198
4.12
5
51.0
398.7
1.150
4.18
6
52.0
399.2
1.115
4.24
7
53.0
399.4
1.067
4.28
2.恒Ie方式
⑴设置THLWL-3微机励磁装置的“励磁调节方式”为“恒Ie'
;
具体操作同恒Ug方式
实验步骤⑴
⑵设置THLWL-3微机励磁装置的“恒Ie预定值”为“1400mA;
具体操作同恒Ug方式实验步骤⑵。
⑶重复恒Ug方式实验步骤⑶、⑷,从THLWL-3微机励磁装置读取发电机电压、励磁电流和给定电压的数值并记录于表3-2-3-2中。
表3-2-3-2
405.1
1.396
3.85
413.1
1.397
422.1
1.398
429
1.389
438.1
8
447.2
9
456.5
3.恒Ur方式
⑴设置THLWL-3微机励磁装置的“励磁调节方式”为“恒Ur;
⑵设置THLWL-3微机励磁装置的“恒Ur预定值”为“4760mV’;
具体操作同恒Ug方式实验步骤⑵。
⑶重复恒Ug方式实验步骤⑶、⑷,从THLWL-3微机励磁装置读取发电机电压、励磁电流和给定电压的数值并记录于表3-2-3-3中。
4.恒Q方式
⑴重复恒Ug方式实验步骤⑴、⑵和⑶。
⑵
⑶并网后,通过调节调速装置使发电机组发出一定的有功,通过调节励磁或系统电压使青电机组发出一定的无功。
要求保证发电机功率因数为0.8。
按下THLWT-3微机调速装置面板上的“+”键或“―”键来增大或减小有功功率;
降低15kVA自耦调压器的电压,使发电机发出一定的无功功率。
旬选择“恒Q”方式,具体操作如下:
按下THLWL-3微机励磁装置面板上的“恒Q”镶
胡改变系统电压,从THLWL-3微机励磁装置读取发电机电压、励磁电流、给定电压和无功(右盥制!
PfWi3-2-3-4中。
表3-2-3-3
并序号网
发电机频率
fg(Hz)
Ie(A)
Ue(V)
乙"
刖
按1
274.9
0.714
4.75
下2
278.9
0.705
恒3
285.1
0.700
Q
键是非
290.7
0.702
296.8
0.703
304.9
0.711
309.1
表3-2-3-4
序
号
系统电压
Us(V)
发电机电流
Ig(A)
给定电压
Ur(V)
有功功率
P(kW)
无功功率
Q(kVar)
350
400
1.70
1.695
48.00
0.92
0.717
390
1.57
1.879
51.32
0.91
0.689
435
1.51
1.922
52.21
0.95
0.692
410
444
1.44
1.978
53.42
0.698
四种控制方式相互切换时,切换前后运行工作点应重合。
5.负荷调节
⑴设置子菜单“励磁调节方式”为“恒Ug”方式,操作参照恒Ug方式实验步骤⑴。
⑵将系统电压调到300V(调节自耦调压器到300V)发电机组并网,具体操作参照第一
⑶调节发电机发出的有功和无功到额定值,即:
P=2kW,Q=1.5kVar。
调节有功,即按
下THLWT-3微机调速装置面板上的“+”键或“―”键来增大或减小有功功率;
调节无
功,即按下THLWL-3微机调速装置面板上的“+”键或“―”键来增大或减小无功功率。
(4)从THLWL-3微机调速装置读取功角,从THLWL-3微机调速装置读取励磁电流和励
磁电压,并记录数据于表3-2-3-5
⑸重复步骤⑶,调节发电机发出的有功和无功为额定值的一半。
(6)重复步骤⑷
⑺重复步骤⑶,调节发电机输出的有功和无功接近0。
⑻重复步骤⑷
发电机状态
励磁电流Ie(A)
励磁电压Ue(V)
功角8(°
)
空载
0.733
27.90
/
半负载
1.572
45.95
27
额定负曩、实验1
艮告2.330
60.3
43
1.自行体会和总结微机励磁调节器四种运行方式的特点。
说说他们各适合于那种场合
应用?
对电力系统运行而言,哪一种运行方式最好?
是就电压质量,无功负荷平衡,电
力系统稳定性等方面进行比较。
2.分析励磁调节器的工作过程及其作用。
1答:
励磁调节器允许方式分开环运行和闭环运行两种方式其中有恒励磁电流运行、恒励
磁电压运行、恒功率因素运行、恒功率角运行四种。
无刷励磁还应具有恒励磁机定子电压
调节运行方式
恒机端电压(自动)运行方式该方式为发电机励磁系统闭环自动调节方式。
在该种运行方式下,数字式励磁调节器的旨要任务是维持发电机端电压恒定,一般是把机端电压,作为反馈
量,实现PID调节;
向时,为了提高电力系统运行的稳定件,数字式励磁调节器还可以实现更为复杂的控制规律
在恒励磁电流运行方式下,数字式励磁调节器采入信号,与给定值比较,经比例(积分)。
控制规律的运算后送出控制信号到移相触发单元
2答:
发电机励磁功率取自发电机端,经过励磁变压器LB降压,可控硅整流器KZL整流后
给发电机励磁。
自动励磁调节器根据装在发电机出口的电压互感器TV和电流互感器TA采集
的电压、电流信号以及其它输入信号,按事先确定的调节准则控制触发三相全控整流桥可控硅的移相脉冲,从而调节发电机的励磁电流,使得在单机运行时实现自动稳压,在并网时实
现自动调节无功功率,提高电力系统的稳定性。
发电机的线电压UAG口相电流旧分别经电
压互感器和电流互感器变送后,经鉴相电路产生电压周期的方波脉冲和电压电流相位差的方
波脉冲信号送PIC16F877微控制器,用PIC的计数器测量这两脉冲的宽度,便可得到相位差
计数值,即电网的功率因素角。
然后通过查表得出相应的功率因素,进一步求出有功功率和
无功功率。
调节励磁,进而调节电压的大小与方向。
改变励磁的大小可以改变电压的大
小;
改变励磁的相角可以控制发电机的功率角,使得发出的有功无功可以改变。
另外电压大
小主要影响发电的无功,电压相角主要影响发电的有功。
我深切感受到了自己动手操作方面的不足,实际的动手操作并不像想象中的那么简单,我们不能仅仅学一些课本上的理论知识,还要将学习应与实践相结合,更注重动手能力的培养,这样才有助于我们自身综合素质的提高。
明白了励磁调节器的功能,了解了各种励磁方式的特点和改变励磁可以调整发电机空载电动势等内容。
实验四跳灭磁开关灭磁和逆变灭磁实验
-、实验目的
1.理解灭磁的作用、原理和方式。
2.加深对三相整流电路有源逆变工作状态的理解。
当发电机内部、引出线、与发电机直接连接的主变压器内部或与发电机出口直接连接的厂用变压器内部发生故障时,虽然继电保护装置能快速地使发电机出口回路的断路器跳开,切断故障点与系统的联系,但发电机励磁电流产生的感应电动势会继续维持故障电流。
为了快速限制发电机内部或与其直接相连的变压器内部的故障范围,减小其损坏程度,
必须尽快地降低发电机电动势,即需要把励磁绕组电流建立的磁场迅速地降低到尽可能
小。
把发电机磁场迅速降低到尽可能小的过程称为灭磁。
如上所述,对发电机灭磁的主要要求是可靠而迅速地消耗储存在发电机中的磁场能量。
最简单的灭磁方式是切断发电机的励磁绕组与电源的连接。
但是,这样将使励磁绕组
两端产生较高的过电压,危及到主机绝缘的安全。
为此,灭磁时必须使励磁绕组接至可使磁场能量耗损的闭合回路中。
根据实现灭磁方式的不同,分为跳灭磁开关灭磁和逆变灭磁。
跳
灭磁开关灭磁原理如下图所示:
图3-2-4-1跳灭磁开关灭磁原
理示意图
灭磁时,灭磁开关QFG的常开触点断开,切断了发电机励磁绕组和电源的连接;
灭
磁开关QFG的常闭触点闭合,使与发电机励磁绕组并联的线形电阻R接入回路,由此
电阻消耗发电机的磁场能量,完成了灭磁。
逆变灭磁原理如下图所示:
图3-2-4-2逆变灭磁原理示意
图当触发控制角大于900时,全控桥将工作在有源逆变
状态下,此时转子储存的磁场能量就以续流的形式经全控桥反送到交流电源,以
使转子磁场的能量不断减
少,达到灭磁目的。
此时,灭磁开关QFG的常闭触点处于断开状态,即线形电阻
R未接入回路;
灭磁开关QFG的常开触点闭合,这是与跳灭磁开关灭磁不同
的。
1.跳灭磁开关灭磁实验⑴
⑵发电机组的起励建压,具体操作参照第一章。
目按下THLCL-2常规可控励磁装置面板上的“灭磁”按钮,记录励磁电流和励磁电压的变%(观察控制柜上的励磁电流表和电压表)。
并通过示波器观测励磁电压Ue(对应面板上的Ud)波形。
口
固发电机组停机,具体操作参照第一章。
逆变灭磁实验
发电机组的起励建压,具体操作参照第一章。
四、实验报告
1.分析在他励方式下逆变灭磁与在自并励下逆变灭磁有什么差别?
答:
他励是针对直流发电机作为励磁机向交流发电机提供励磁电流,那么它励下
的逆变灭磁是灭掉直流发电机的励磁电流,从而使直流发电机无法向交流发电机
提供励磁电流!
这种励磁方式一般实用与50MW以下机组。
自并励是将交流发电
机出现增设励磁变压器提供励磁,它是直接通过可控硅整流输出到交流发电机的
转子。
其实逆变灭磁原理都是一样!
通过可控角的控制实现的逆变,可以用平均电压的积分公式得到电压与控制角的关系!
2.分析灭磁为何只能在空载下进行,若在发电机并网状态下灭磁会导致什么后果。
那是不是因为如果直接灭磁后,原动机保持不变,没有励磁发电机没有能量输
出,使得发电机转子越来越快?
是的要是并列状态的发电机失磁后,将进相运行,若带有功较多,将变成失步的异步状态,并出现大幅度的电流和功率摆动,要是原动机
不及时减小输出,将使机组过速
通过实验了解到了灭磁的原理及应用和灭磁的方式。
锻炼了实际动手能力,培养了我们电力系统自动化实验操作的新观念。
实验五压差、频差和相差闭锁与整定实验
实验目的
1.认识自动准同期装置三个控制单元的作用及其工作原理。
2.熟悉压差、频差和相差闭锁与整定的控制方法。
为了使待并发电机组满足并列条件,自动准同期装置设置了三个控制单元:
1.频差控制单元:
它的任务是检测发电机电压Ug与系统电压Us间的滑差角频率必,控制调速器,调节发电机转速,使发电机的频率接近于系统频率,满足允许频差。
2.压差控制单元:
它的功能是检测发电机电压Ug与系统电压Us间的电压幅值差,控制励磁调节器,调节发电机电压Ug使之与系统电压Us的压差小于规定允许值,促使并列条件的形成。
3.合闸信号控制单元:
检查并列条件,当待并发电机组的频率和电压都满足并列条件,在相角差8接近于零或控制在允许范围以内时,合闸控制单元就选择合适的时间
(导前时间)发出合闸信号,使并列断路器的主触头接通,完成发电机组与电网的并列
运行。
三者之间的逻辑机构框图如下:
图3-3-3-1
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 成都 理工大学 电力系统 自动化 实验 报告