小学数学公式及知识汇总 2Word下载.docx
- 文档编号:17572547
- 上传时间:2022-12-07
- 格式:DOCX
- 页数:24
- 大小:33.87KB
小学数学公式及知识汇总 2Word下载.docx
《小学数学公式及知识汇总 2Word下载.docx》由会员分享,可在线阅读,更多相关《小学数学公式及知识汇总 2Word下载.docx(24页珍藏版)》请在冰豆网上搜索。
19、分数的基本性质:
分数的分子和分母同时乘以或除以同一个数
(0除外),分数的大小不变。
20、一个数除以分数,等于这个数乘以分数的倒数。
21、甲数除以乙数(0除外),等于甲数乘以乙数的倒数。
分数的加、减法则:
分数的乘法则:
用分子的积做分子,用分母的积做分母。
22、什么叫比:
两个数相除就叫做两个数的比。
2÷
5或3:
6或1/3
比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。
23、什么叫比例:
表示两个比相等的式子叫做比例。
如3:
6=9:
18
24、比例的基本性质:
在比例里,两外项之积等于两内项之积。
25、解比例:
求比例中的未知项,叫做解比例。
χ=9:
26、正比例:
两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。
y/x=k(k一定)或kx=y
27、反比例:
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。
如:
x×
y=k(k一定)或k/x=y
28、百分数:
表示一个数是另一个数的百分之几的数,叫做百分数。
百分数也叫做百分率或百分比。
29、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。
其实,把小数化成百分数,只要把这个小数乘以100%就行了。
30、把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
31、把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。
其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。
32、把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
33、要学会把小数化成分数和把分数化成小数的化发。
34、最大公约数:
几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数。
(或几个数公有的约数,叫做这几个数的公约数。
其中最大的一个,叫做最大公约数。
)
35、互质数:
公约数只有1的两个数,叫做互质数。
36、最小公倍数:
几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。
37、通分:
把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。
(通分用最小公倍数)
38、约分:
把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。
(约分用最大公约数)
39、最简分数:
分子、分母是互质数的分数,叫做最简分数。
40、分数计算到最后,得数必须化成最简分数。
41、个位上是0、2、4、6、8的数,都能被2整除,即能用2进行
42、约分。
个位上是0或者5的数,都能被5整除,即能用5进行约分。
在约分时应注意利用。
43、偶数和奇数:
能被2整除的数叫做偶数。
不能被2整除的数叫做奇数。
44、质数(素数):
一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。
45、合数:
一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。
1不是质数,也不是合数。
46、利息=本金×
利率×
时间(时间一般以年或月为单位,应与利率的单位相对应)
47、利率:
利息与本金的比值叫做利率。
一年的利息与本金的比值叫做年利率。
一月的利息与本金的比值叫做月利率。
48、自然数:
用来表示物体个数的整数,叫做自然数。
0也是自然数。
49、循环小数:
一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。
如3.141414
50、不循环小数:
一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数。
如圆周率:
3.141592654
51、无限不循环小数:
一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。
如3.141592654……
52、什么叫代数?
代数就是用字母代替数。
53、什么叫代数式?
用字母表示的式子叫做代数式。
3x=ab+c
----------------------------------------------------------------------------------------------------------------------
第二部分:
定义定理
一、算术方面
1.加法交换律:
2.加法结合律:
三个数相加,先把前两个数相加,或先把后两个数相加,再同第
三个数相加,和不变。
3.乘法交换律:
4.乘法结合律:
5.乘法分配律:
5。
6.除法的性质:
0除以任何不是0的数都得0。
7.等式:
8.方程式:
9.一元一次方程式:
含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。
10.分数:
把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
11.分数的加减法则:
12.分数大小的比较:
13.分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14.分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15.分数除以整数(0除外),等于分数乘以这个整数的倒数。
16.真分数:
17.假分数:
18.带分数:
19.分数的基本性质:
分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
20.一个数除以分数,等于这个数乘以分数的倒数。
21.甲数除以乙数(0除外),等于甲数乘以乙数的倒数。
第三部分:
几何体
1.正方形
正方形的周长=边长×
4
公式:
C=4a
正方形的面积=边长×
边长
公式:
S=a×
a
正方体的体积=边长×
边长×
V=a×
a×
2.正方形
长方形的周长=(长+宽)×
2
C=(a+b)×
长方形的面积=长×
宽
b
长方体的体积=长×
宽×
高公式:
b×
h
3.三角形
三角形的面积=底×
高÷
2。
S=a×
h÷
4.平行四边形
平行四边形的面积=底×
高
5.梯形
梯形的面积=(上底+下底)×
S=(a+b)h÷
6.圆
直径=半径×
2公式:
d=2r
半径=直径÷
r=d÷
圆的周长=圆周率×
直径
c=πd=2πr
圆的面积=半径×
半径×
π
S=πrr
7.圆柱
圆柱的侧面积=底面的周长×
高。
S=ch=πdh=2πrh
圆柱的表面积=底面的周长×
高+两头的圆的面积。
S=ch+2s=ch+2πr2
圆柱的总体积=底面积×
V=Sh
8.圆锥
圆锥的总体积=底面积×
高×
1/3公式:
V=1/3Sh
三角形内角和=180度。
平行线:
同一平面内不相交的两条直线叫做平行线
垂直:
两条直线相交成直角,像这样的两条直线,
我们就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。
第四部分:
计算公式
数量关系式:
1、每份数×
份数=总数
总数÷
每份数=份数
总数÷
份数=每份数
2、1倍数×
倍数=几倍数几倍数÷
1倍数=倍数
几倍数÷
倍数=1倍数
3、速度×
时间=路程
路程÷
速度=时间
时间=速度
4、单价×
数量=总价
总价÷
单价=数量
总价÷
数量=单价
5、工作效率×
工作时间=工作总量
工作总量÷
工作效率=工作时间
工作总量÷
工作时间=工作效率
6、加数+加数=和
和-一个加数=另一个加数
7、被减数-减数=差
被减数-差=减数
差+减数=被减数
8、因数×
因数=积
积÷
一个因数=另一个因数
9、被除数÷
除数=商
被除数÷
商=除数
商×
除数=被除数
******************************************************
和差问题的公式
(和+差)÷
2=大数
(和-差)÷
2=小数
和倍问题
和÷
(倍数-1)=小数
小数×
倍数=大数
(或者和-小数=大数)
差倍问题
差÷
(或小数+差=大数)
植树问题:
1非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷
株距-1
全长=株距×
(株数-1)
株距=全长÷
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷
株距
株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷
(株数+1)
2封闭线路上的植树问题的数量关系如下
盈亏问题
(盈+亏)÷
两次分配量之差=参加分配的份数
(大盈-小盈)÷
(大亏-小亏)÷
相遇问题
相遇路程=速度和×
相遇时间
相遇时间=相遇路程÷
速度和
速度和=相遇路程÷
追及问题
追及距离=速度差×
追及时间
追及时间=追及距离÷
速度差
速度差=追及距离÷
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷
水流速度=(顺流速度-逆流速度)÷
浓度问题:
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷
溶液的重量×
100%=浓度
浓度=溶质的重量
浓度=溶液的重量
利润与折扣问题:
利润=售出价-成本
利润率=利润÷
成本×
100%=(售出价÷
成本-1)×
100%
涨跌金额=本金×
涨跌百分比
折扣=实际售价÷
原售价×
100%(折扣<1)
利息=本金×
时间
税后利息=本金×
时间×
(1-20%)
面积,体积换算
(1)1公里=1千米
1千米=1000米
1米=10分米
1分米=10厘米
1厘米=10毫米
(2)1平方米=100平方分米
1平方分米=100平方厘米
1平方厘米=100平方毫米
(3)1立方米=1000立方分米
1立方分米=1000立方厘米
1立方厘米=1000立方毫米
(4)1公顷=10000平方米
1亩=666.666平方米
(5)1升=1立方分米=1000毫升1毫升=1立方厘米
重量换算:
1吨=1000千克
1千克=1000克
1千克=1公斤
人民币单位换算
1元=10角
1角=10分
1元=100分
时间单位换算:
1世纪=100年1年=12月
大月(31天)有:
1\3\5\7\8\10\12月
小月(30天)的有:
4\6\9\11月
平年2月28天,闰年2月29天
平年全年365天,闰年全年366天
1日=24小时1时=60分
1分=60秒1时=3600秒
小学数学知识点汇总
一.整数和小数
1.最小的一位数是1,最小的自然数是0
2.小数的意义:
把整数“1”平均分成10份、100份、1000份……这样的一份或几份分别是十分之几、百分之几、千分之几……可以用小数来表示。
3.小数点左边依次是整数部分,小数点右边是小数部分,依次是十分位、百分位、千分位……
4.小数的分类:
小数有限小数
无限循环小数
无限小数{
无限不循环小数
5.整数和小数都是按照十进制计数法写出的数。
6.小数的性质:
小数的末尾添上0或者去掉0,小数的大小不变。
7.小数点向右移动一位、二位、三位……原来的数分别扩大10倍、100倍、1000倍……
小数点向左移动一位、二位、三位……原来的数分别缩小10倍、100倍、1000倍……
二.数的整除
1.整除:
整数a除以整数b(b≠0),除得的商正好是整数而且没有余数,我们就说a能被b整除,或者说b能整除a。
2.约数、倍数:
如果数a能被数b整除,a就叫做b的倍数,b就叫做a的约数。
3.一个数倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。
一个数约数的个数是有限的,最小的约数是1,最大的约数是它本身。
4.按能否被2整除,非0的自然数分成偶数和奇数两类,能被2整除的数叫做偶数,不能被2整除的数叫做奇数。
5.按一个数约数的个数,非0自然数可分为1、质数、合数三类。
质数:
一个数,如果只有1和它本身两个约数,这样的数叫做质数。
质数都有2个约数。
合数:
合数至少有3个约数。
最小的质数是2,最小的合数是4
1~20以内的质数有:
2、3、5、7、11、13、17、19
1~20以内的合数有“4、6、8、9、10、12、14、15、16、18
6.能被2整除的数的特征:
个位上是0、2、4、6、8的数,都能被2整除。
能被5整除的数的特征:
个位上是0或者5的数,都能被5整除。
能被3整除的数的特征:
一个数的各位上数的和能被3整除,这个数就能被3整除。
7.质因数:
如果一个自然数的因数是质数,这个因数就叫做这个自然数的质因数。
8.分解质因数:
把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
9.公约数、公倍数:
几个数公有的约数,叫做这几个数的公约数;
其中最大的一个,叫做这几个数的最大公约数。
几个数公有的倍数,叫做这几个数的公倍数;
其中最小的一个,叫做这几个数的最小公倍数。
10.一般关系的两个数的最大公约数、最小公倍数用短除法来求;
互质关系的两个数最大公约数是1,最小公倍数是两数之积;
倍数关系的两个数的最大公约数是小数,最小公倍数是大数。
11.互质数:
公约数只有1的两个数叫做互质数。
12.两数之积等于最小公倍数和最大公约数的积。
小学数学知识点汇总
(二)
三.四则运算
1.一个加数=和-另一个加数被减数=差+减数减数=被减数-差
一个因数=积÷
另一个因数被除数=商×
除数除数=被除数÷
商
2.在四则运算中,加、减法叫做第一级运算,乘、除法叫做第二级运算。
3.运算定律:
(1)加法交换律:
a+b=b+a乘法交换律:
b=b×
a
两个数相加,交换加数的位置,它们的和不变。
两个数相加,交换因数的位置,它们的积不变。
(2)加法结合律:
(a+b)+c=a+(b+c)乘法结合律:
(a×
b)×
c=a×
(b×
c)
三个数相加,先把前两个数相加,再同第三个数相加;
或者先把后两个数相加,再同第一个数相加,它们的和不变。
三个数相乘,先把前两个数相乘,再同第三个数相乘;
或者先把后两个数相乘,再同第一个数相乘,它们的积不变。
(3)乘法分配律:
(a+b)×
c+b×
c
(4)减法的性质:
a-b-c=a-(b+c)除法的性质:
a÷
b÷
c=a÷
从一个数里连续减去两个数,等于从这个数里减去两个减数的和。
一个数连续除以两个数,等于这个数除以两个除数的积。
四.关系式
1.速度×
时间=路程路程÷
时间=速度路程÷
速度=时间
工作效率×
工作时间=工作总量工作总量÷
工作效率=工作时间工作总量÷
工作时间=工作效率
单价×
数量=总价总价÷
数量=单价总价÷
单价=数量
五.方程
1.方程:
含有未知数的等式叫做方程。
2.方程的解:
使方程左右两边相等的未知数的值,叫做方程的解。
3.解方程:
求方程解的过程叫做解方程。
六.分数和百分数
1.分数的意义:
把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。
2.分数单位:
把单位“1”平均分成若干份,表示其中一份的数,叫做分数单位。
3.分数和除法的联系:
分数的分子就是除法中的被除数,分母就是除法中的除数。
分数和小数的联系:
小数实际上就是分母是10、100、1000……的分数。
分数和比的联系:
分数的分子就是比的前项,分数的分母就是比的后项。
4.分数的分类:
分数可以分为真分数和假分数。
5.真分数:
分子小于分母的分数叫做真分数。
真分数小于1。
假分数:
分子大于或等于分母的分数叫做假分数。
假分数大于或者等于1。
6.最简分数:
分子与分母互质的分数叫做最简分数。
7.分数的基本性质:
分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不变。
8.这样的分数可以化成有限小数:
前提是这个分数要是最简分数,如果分母只含有2、5这2个质因数,这样的分数就能化成有限小数。
9.百分数:
表示一个数是另一个数的百分之几的数叫做百分数。
百分数也叫做百分率或者百分比。
百分数通常用“%”来表示。
小学数学复习考试知识点汇总
一、小学生数学法则知识归类
(一)笔算两位数加法,要记三条
1、相同数位对齐;
2、从个位加起;
3、个位满10向十位进1。
(二)笔算两位数减法,要记三条
2、从个位减起;
3、个位不够减从十位退1,在个位加10再减。
(三)混合运算计算法则
1、在没有括号的算式里,只有加减法或只有乘除
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 小学数学公式及知识汇总 小学 数学公式 知识 汇总