牛头刨床课程设计报告Word文件下载.docx
- 文档编号:17514286
- 上传时间:2022-12-06
- 格式:DOCX
- 页数:21
- 大小:340.34KB
牛头刨床课程设计报告Word文件下载.docx
《牛头刨床课程设计报告Word文件下载.docx》由会员分享,可在线阅读,更多相关《牛头刨床课程设计报告Word文件下载.docx(21页珍藏版)》请在冰豆网上搜索。
转速n2(r/min)
48
49
50
52
47
55
60
机架lO2O4(mm)
380
350
430
360
370
400
390
410
工作行程H(mm)
310
300
330
250
行程速比系数K
1.46
1.40
1.44
1.53
1.34
1.50
1.37
连杆与导杆之比
lBC/lO4B
0.25
0.3
0.36
0.33
0.32
0.28
表2
导杆机构的动态静力分析
lO4S4
xS6
yS6
G4
G6
P
yp
JS4
mm
N
kg.m2
1,2,3
0.5lO4B
240
200
700
7000
80
1.1
4,5,6
220
800
9000
1.2
7,8,9
180
40
620
8000
100
飞轮转动惯量的确定
δ
nO’
z1
zO"
z1’
JO2
JO1
JO"
JO’
r/min
Kg.m2
1-5
0.15
1440
10
20
0.5
0.2
6-10
13
16
0.4
11-15
0.16
15
19
三.设计要求
1、运动方案设计
根据牛头刨床的工作原理,拟定1~2个其他形式的执行机构(连杆机构),给出机构简图并简单介绍其传动特点。
2、确定执行机构的运动尺寸
根据表一对应组的数据,用图解法设计连杆机构的尺寸,并将设计结果和步骤写在设计说明书中。
注意:
为使整个过程最大压力角最小,刨头导路位于导杆端点B所作圆弧高的平分线上(见图d)。
3、进行导杆机构的运动分析
根据表一对应组的数据,每人做曲柄对应的1到2个位置(如图2中1,2,3,……,12各对应位置)的速度和加速度分析,要求用图解法画出速度多边形,列出矢量方程,求出刨头6的速度、加速度,将过程详细地写在说明书中。
4、对导杆机构进行动态静力分析
根据表二对应组的数据,每人确定机构对应位置的各运动副反力及应加于曲柄上的平衡力矩。
作图部分与尺寸设计及运动分析画在同一X纸上(2号或3号图纸)。
提示:
如果所给数据不方便作图可稍微改动数据,但各组数据应该一致,并列出改动值。
5、数据总汇并绘图
最后根据汇总数据画出一份刨头的位移、速度、加速度线图以及平衡力矩的变化曲线。
6、完成说明书
每人编写设计说明书一份。
写明组号,对应曲柄的角度位置。
四.设计方案选定
如图2所示,牛头刨床的主传动机构采用导杆机构、连杆滑块机构组成的5杆机构。
采用导杆机构,滑块与导杆之间的传动角r始终为90o,且适当确定构件尺寸,可以保证机构工作行程速度较低并且均匀,而空回行程速度较高,满足急回特性要求。
适当确定刨头的导路位置,可以使图2
压力角
尽量小。
五.机构的运动分析
选择第三组数据求得机构尺寸如下
θ=180°
(k-1/k+1)=30°
lO2A=lO4O2sin(θ/2)=111.3mm
lO4B=0.5H/sinθ/2)=773.0mm
lBC=0.36lO4B=278.28mm
lO4S4=0.5lO4B=386.5mm
曲柄位置“3”速度分析,加速度分析(列矢量方程,画速度图,加速度图)
曲柄在3位置时的机构简图如左图所示由图量得此位置的位移S=86.9mm,Lo4A=514.7mm。
设力、加速度、速度的方向向右为正。
1.速度分析
取曲柄位置“3”进行速度分析。
因构件2和3在A处的转动副相连,故υA3=υA2,其大小等于ω2lO2A,方向垂直于O2A线,指向与ω2一致。
ω2=2πn2/60rad/s=5.23(rad/s)
υA3=υA2=ω2·
lO2A=0.582m/s
取构件3和4的重合点A进行速度分析。
列速度矢量方程,得
υA4=υA3+υA4A3
大小?
√?
方向⊥O4A⊥O2A∥O4B
取速度极点P,速度比例尺µ
v=0.005(m/s)/mm,作速度多边形如图1-2
图1—2
则由图1-2知:
υA3=lpA3·
μv=0.582m/sυA4A3=la3a4·
μv=0.198m/s
ω4=υA4A3/lO4A=0.976(rad/s)υB=ω4.lO4B=0.754(m/s)
取5构件作为研究对象,列速度矢量方程,得
Vc=VB+VcB
方向∥XX⊥O4B⊥BC
作速度多边行如图1-2,则由图1-2知
υC=lpc·
μv=0.728m/sω5=υCB/lBC=0.701rad/s
2.加速度分析
取曲柄位置“3”进行加速度分析。
因构件2和3在A点处的转动副相连,
其大小等于ω22lO2A方向由A指向O2。
aA4A3K=2ω4υA4A3=0.386(m/s2)aA3=ω22·
lO2A=3.04m/s2
aA3=ω42·
lO4A=0.303(m/s2)
取3、4构件重合点A为研究对象,列加速度矢量方程得:
aA4=aNA4+aTA4=aA3+aKA4A3+aRA4A3
大小√?
√√?
方向A→O4⊥O4AA→O2⊥O4A∥O4A
取加速度极点为P’,加速度比例尺µ
a=0.005((m/s2)/mm),
作加速度多边形如图1-3所示.则由图1-3知
aA4=uap’a4’=0.48(m/s2)
aB=uapb’=0.723(m/s2)
aS4=0.5aB=0.362(m/s2)
a4=atA4/lo4A=0.727(m/s2)
aC=aB+aCB+atCB
大小:
?
方向:
//xx√C→B⊥BC
aC=uap’c’=0.646(m/s2)
图1—3
曲柄位置“9”速度分析,加速度分析(列矢量方程,画速度图,加速度图)
曲柄在9位置时的机构简图如左图所示由图量得此位置的位移S=375.38mm,Lo4A=358.61mm。
取曲柄位置“9”进行速度分析。
v=0.005(m/s)/mm,作速度多边形如图1-4
图1—4
则由图1-4知:
μv=0.51m/s
ω4=υA4A3/lO4A=0.80(rad/s)υB=ω4.lO4B=0.62(m/s)
μv=0.5978m/sω5=υCB/lBC=0.59rad/s
取曲柄位置“9”进行加速度分析。
aA4A3K=2ω4υA4A3=0.816(m/s2)aA3=ω22·
aA4n=ω42·
lO4A=0.23(m/s2)
作加速度多边形如图1-5所示.则由图1-5知
aA4=uap’a4’=1.26m/s2
aB=uapb’=2.73m/s2
aS4=0.5aB=1.36m/s2
a4=atA4/lo4A=3.45m/s2
aC=uap’c’=2.72(m/s2)
六、机构动态静力分析
一、首先依据运动分析结果,计算构件4的惯性力FI4(与aS4反向)、构件4的惯性力矩MI4(与a4反向,逆时针)、构件4的惯性力平移距离lhd(方位:
右上)、构件6的惯性力矩FI6(与aC反向)。
F14=m4aS4=G4/g.aS4=200/10×
0.362=7.24(N)
M14=a4JS4=0.727×
1.1N·
m=0.7997(N/m)
Lh4==
=0.7997/7.24=110.45(mm)
FI6=m6aS6=G6/g.aS6=70×
0.646=45.22(N)
1.取构件5、6基本杆组为示力体(如图所示)
因构件5为二力杆,只对构件(滑块)6做受力分析即可,首先列力平衡方程:
FR65=—FR56FR54=—FR45
FR16+Fr+F16+G6+FR56=0
大小?
√√√?
方向⊥xx∥xx∥xx⊥x∥BC
按比例尺μF=10N/mm作力多边形,如图所示,求出运动副反力FR16和FR56。
俩图均为杆件5,6的受力分析。
按比例尺10N/mm作里多边形
FR16=10×
87.9=879(N)
FR56=10×
349.54=3495.4(N)
对C点列力矩平衡方程:
FR16lx+F16yS6=FryF++G6xS6
Lx=507.097(mm)
2.取构件3、4基本杆组为示力体(如图所示)
首先取构件4,对O4点列力矩平衡方程(反力FR54的大小和方向为已知),求出反力FR34:
FR54=—FR45FR34=—FR43
构件4的受力分析
FR54×
lh1+FI4×
lh2+G4×
lh3﹣FR34lO4A=0
Fr34=5156.51(N)
再对构件4列力平衡方程,按比例尺μF=10N/mm作力多边形如图所示。
求出机架对构件4的反力FR14
ΣF=0FR54+G4+FI4+FR34+FR14=0
大小√√√√?
方向∥BC⊥xx√⊥O4A?
FR14=10X198.4=1984(N)
3.取构件2为示力体
FR34=—FR43FR32=—FR23
FR23+FR12=0FR12=5156.51(N)Σ=0F
FR32×
lh-Mb=0
Mb=500.00(N.m)
二、计算构件4的惯性力FI4(与aS4反向)、构件4的惯性力矩MI4(与a4反向,逆时针)、构件4的惯性力平移距离lhd(方位:
F14=m4aS4=27.2(N)
M14=a4JS4=3.46×
m=3.806(N/m)
Lh4=M14/F14=139.926(mm)
FI6=m6aS6=190.4(N)
1.取构件5、6基本杆组为示力体(如图所示)
构件5.6的受力简图
由于FR65=—FR56FR54=—FR45Σ=oF
√√√?
方向⊥xx∥xx∥xx⊥xx∥BC
因此可以做出里多边形:
按比例尺μF=10N/mm作力多边形,如图所示,求出运动副反力FR16和FR56。
71.02=710.2(N)
19.43=194.3(N)
Σ=0Mc
FR16lx+FI6yS6=G6xS6
LX=223.14(mm)
Σ=04OMFR54×
lh3﹣FR34lO4A=0
FR34=284.56(N)
求出机架对构件4的反力FR14:
Σ=0FFR54+G4+FI4+FR34+FR14=0
大小√√√√?
方向∥BC⊥xx√⊥O4A?
FR14=10×
61.7=617(N)
3.取构件2为示力体(如图所示)
FR23+FR12=0FR12=284.56(N)Σ=0F
Mb=20.86(N.m)
七.数据总汇并绘图
统计12人的数据得到如下表
位置
11
12
νc(m/s)
0.43
0.728
0.60
0.807
0.7
0.44
-0.15
-0.60
-1.24
-1.29
-0.638
ac(m/s2)
5.4
3.26
0.646
0.55
-1.35
-3.66
-5.24
-5.15
-2.72
-1.76
4.941
s(mm)
23.5
86.9
167
241.3
317.9
378.1
357.4
267
131.2
62
Mr(N·
m)
69
500
562.2
564.5
504.37
256.5
12.6
20.86
32.2
-67.3
-26.03
根据以上数据用软件绘图得如下:
速度——位置变化曲线
加速度——位置变化曲线
位移——位置变化曲线
平衡力矩——位置变化曲线
八、飞轮的设计
1.确定△Wmax
1>
将各点的平衡力矩画在坐标纸上,如下图。
平衡力矩所做的功可以通过数据曲线与横坐标之间所夹得面积之和求的。
依据在一个周期内及360°
内,曲柄驱动力矩所做的功等于阻力力矩所做的功,即可求的驱动力矩Md。
在下图中,横坐标为曲柄转角,一个周期2π,将一个周期变成180份,纵坐标轴为力矩:
Md=ΣSi/2π=【(x1+x2)/2+(x2+x3)/2…………】2°
π/180°
/2π=199.7N.m
2>
根据盈亏功的原理,求得各盈亏功值,并做能量指示图,以曲柄的平均驱动力矩为分界线,求出各区段盈亏功值
△W1=104.72N.m
△W2=733.03N.m
△W3=471.23N.m
曲柄的平均驱动力矩Md=199.7N.m
曲柄的最大驱动力矩Md=570N.m
△Wmax=733.03N.m
求集中在A点的等效转动惯量
由公式:
可知等效转动惯量:
题目给出:
又由定轴轮系的传动比:
可得:
由最大盈亏功可以求得飞轮的转动惯量
JF>
=[900△Wmax]/(π2n2[﹠])—JC=167.93(N.m2)
因此可以设计出所需要求的飞轮。
九.参考文献
1.《机械原理》(第七版)吴克坚等主编高等教育
2.《机械原理课程设计》曲继方主编,机械工业
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 牛头 刨床 课程设计 报告