小升初应用题专题模块Word下载.docx
- 文档编号:17482824
- 上传时间:2022-12-06
- 格式:DOCX
- 页数:16
- 大小:28.49KB
小升初应用题专题模块Word下载.docx
《小升初应用题专题模块Word下载.docx》由会员分享,可在线阅读,更多相关《小升初应用题专题模块Word下载.docx(16页珍藏版)》请在冰豆网上搜索。
解
每天从甲站开往乙站28辆,从乙站开往甲站24辆,相当于每天从甲站开往乙站(28-24)辆。
把几天以后甲站的车辆数当作1倍量,这时乙站的车辆数就是2倍量,两站的车辆总数(52+32)就相当于(2+1)倍,
那么,几天以后甲站的车辆数减少为
(52+32)÷
(2+1)=28(辆)
所求天数为
(52-28)÷
(28-24)=6(天)
答:
6天以后乙站车辆数是甲站的2倍。
例4
甲乙丙三数之和是170,乙比甲的2倍少4,丙比甲的3倍多6,求三数各是多少?
乙丙两数都与甲数有直接关系,因此把甲数作为1倍量。
因为乙比甲的2倍少4,所以给乙加上4,乙数就变成甲数的2倍;
又因为丙比甲的3倍多6,所以丙数减去6就变为甲数的3倍;
这时(170+4-6)就相当于(1+2+3)倍。
那么,
甲数=(170+4-6)÷
(1+2+3)=28
乙数=28×
2-4=52
丙数=28×
3+6=90
甲数是28,乙数是52,丙数是90。
相遇问题
【含义】两个运动的物体同时由两地出发相向而行,在途中相遇。
这类应用题叫做相遇问题。
【数量关系】相遇时间=总路程÷
(甲速+乙速)
总路程=(甲速+乙速)×
相遇时间
简单的题目可直接利用公式,复杂的题目变通后再利用公式。
例1南京到上海的水路长392千米,同时从两港各开出一艘轮船相对而行,从南京开出的船每小时行28千米,从上海开出的船每小时行21千米,经过几小时两船相遇?
392÷
(28+21)=8(小时)
经过8小时两船相遇。
小李和小刘在周长为400米的环形跑道上跑步,小李每秒钟跑5米,小刘每秒钟跑3米,他们从同一地点同时出发,反向而跑,那么,二人从出发到第二次相遇需多长时间?
“第二次相遇”可以理解为二人跑了两圈。
因此总路程为400×
2
相遇时间=(400×
2)÷
(5+3)=100(秒)
二人从出发到第二次相遇需100秒时间。
甲乙二人同时从两地骑自行车相向而行,甲每小时行15千米,乙每小时行13千米,两人在距中点3千米处相遇,求两地的距离。
“两人在距中点3千米处相遇”是正确理解本题题意的关键。
从题中可知甲骑得快,乙骑得慢,甲过了中点3千米,乙距中点3千米,就是说甲比乙多走的路程是(3×
2)千米,因此,
相遇时间=(3×
(15-13)=3(小时)
两地距离=(15+13)×
3=84(千米)
两地距离是84千米。
追及问题
【含义】两个运动物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的,行进速度要快些,在前面的,行进速度较慢些,在一定时间之内,后面的追上前面的物体。
这类应用题就叫做追及问题。
【数量关系】追及时间=追及路程÷
(快速-慢速)
追及路程=(快速-慢速)×
追及时间
【解题思路和方法】简单的题目直接利用公式,复杂的题目变通后利用公式。
例1
.好马每天走120千米,劣马每天走75千米,劣马先走12天,好马几天能追上劣马?
(1)劣马先走12天能走多少千米?
75×
12=900(千米)
(2)好马几天追上劣马?
900÷
(120-75)=20(天)
列成综合算式
12÷
(120-75)=900÷
45=20(天)
好马20天能追上劣马。
小明和小亮在200米环形跑道上跑步,小明跑一圈用40秒,他们从同一地点同时出发,同向而跑。
小明第一次追上小亮时跑了500米,求小亮的速度是每秒多少米。
小明第一次追上小亮时比小亮多跑一圈,即200米,此时小亮跑了(500-200)米,要知小亮的速度,须知追及时间,即小明跑500米所用的时间。
又知小明跑200米用40秒,则跑500米用[40×
(500÷
200)]秒,所以小亮的速度是
(500-200)÷
[40×
200)]=300÷
100=3(米)
小亮的速度是每秒3米。
我人民解放军追击一股逃窜的敌人,敌人在下午16点开始从甲地以每小时10千米的速度逃跑,解放军在晚上22点接到命令,以每小时30千米的速度开始从乙地追击。
已知甲乙两地相距60千米,问解放军几个小时可以追上敌人?
敌人逃跑时间与解放军追击时间的时差是(22-16)小时,这段时间敌人逃跑的路程是[10×
(22-6)]千米,甲乙两地相距60千米。
由此推知
追及时间=[10×
(22-6)+60]÷
(30-10)=220÷
20=11(小时)
解放军在11小时后可以追上敌人。
一辆客车从甲站开往乙站,每小时行48千米;
一辆货车同时从乙站开往甲站,每小时行40千米,两车在距两站中点16千米处相遇,求甲乙两站的距离。
这道题可以由相遇问题转化为追及问题来解决。
从题中可知客车落后于货车(16×
2)千米,客车追上货车的时间就是前面所说的相遇时间,
这个时间为
16×
2÷
(48-40)=4(小时)
所以两站间的距离为
(48+40)×
4=352(千米)
列成综合算式
[16×
(48-40)]=88×
甲乙两站的距离是352千米。
植树问题
【含义】按相等的距离植树,在距离、棵距、棵数这三个量之间,已知其中的两个量,要求第三个量,这类应用题叫做植树问题。
线形植树
棵数=距离÷
棵距+1
环形植树
棵距
方形植树
棵距-4
三角形植树
棵数=距离÷
棵距-3
面积植树
棵数=面积÷
(棵距×
行距)
先弄清楚植树问题的类型,然后可以利用公式。
一条河堤136米,每隔2米栽一棵垂柳,头尾都栽,一共要栽多少棵垂柳?
解
136÷
2+1=68+1=69(棵)
一共要栽69棵垂柳。
一个圆形池塘周长为400米,在岸边每隔4米栽一棵白杨树,一共能栽多少棵白杨树?
400÷
4=100(棵)
答:
一共能栽100棵白杨树。
一个正方形的运动场,每边长220米,每隔8米安装一个照明灯,一共可以安装多少个照明灯?
220×
4÷
8-4=110-4=106(个)
一共可以安装106个照明灯。
年龄问题
这类问题是根据题目的内容而得名,它的主要特点是两人的年龄差不变,但是,两人年龄之间的倍数关系随着年龄的增长在发生变化。
【数量关系】年龄问题往往与和差、和倍、差倍问题有着密切联系,尤其与差倍问题的解题思路是一致的,要紧紧抓住“年龄差不变”这个特点。
可以利用“差倍问题”的解题思路和方法。
.爸爸今年35岁,亮亮今年5岁,今年爸爸的年龄是亮亮的几倍?
明年呢?
解.
35÷
5=7(倍)
(35+1)÷
(5+1)=6(倍)
今年爸爸的年龄是亮亮的7倍,明年爸爸的年龄是亮亮的6倍。
母亲今年37岁,女儿今年7岁,几年后母亲的年龄是女儿的4倍?
(1)母亲比女儿的年龄大多少岁?
37-7=30(岁)
(2)几年后母亲的年龄是女儿的4倍?
30÷
(4-1)-7=3(年)
列成综合算式
(37-7)÷
3年后母亲的年龄是女儿的4倍。
例3.
3年前父子的年龄和是49岁,今年父亲的年龄是儿子年龄的4倍,父子今年各多少岁?
今年父子的年龄和应该比3年前增加(3×
2)岁,
今年二人的年龄和为
49+3×
2=55(岁)
把今年儿子年龄作为1倍量,则今年父子年龄和相当于(4+1)倍,因此,今年儿子年龄为
55÷
(4+1)=11(岁)
今年父亲年龄为
11×
4=44(岁)
今年父亲年龄是44岁,儿子年龄是11岁。
甲今年的岁数为
△=61-19=42(岁)
乙今年的岁数为
□=42-19=23(岁)
甲今年的岁数是42岁,乙今年的岁数是23岁。
行船问题
行船问题也就是与航行有关的问题。
解答这类问题要弄清船速与水速,船速是船只本身航行的速度,也就是船只在静水中航行的速度;
水速是水流的速度,船只顺水航行的速度是船速与水速之和;
船只逆水航行的速度是船速与水速之差。
【数量关系】
(顺水速度+逆水速度)÷
2=船速
(顺水速度-逆水速度)÷
2=水速
顺水速=船速×
2-逆水速=逆水速+水速×
逆水速=船速×
2-顺水速=顺水速-水速×
大多数情况可以直接利用数量关系的公式。
.一只船顺水行320千米需用8小时,水流速度为每小时15千米,这只船逆水行这段路程需用几小时?
由条件知,顺水速=船速+水速=320÷
8,而水速为每小时15千米,所以,船速为每小时
320÷
8-15=25(千米)
船的逆水速为
25-15=10(千米)
船逆水行这段路程的时间为
320÷
10=32(小时)
这只船逆水行这段路程需用32小时。
甲船逆水行360千米需18小时,返回原地需10小时;
乙船逆水行同样一段距离需15小时,返回原地需多少时间?
解由题意得
甲船速+水速=360÷
10=36
甲船速-水速=360÷
18=20
可见
(36-20)相当于水速的2倍,
所以,
水速为每小时(36-20)÷
2=8(千米)
又因为,乙船速-水速=360÷
15,
乙船速为
360÷
15+8=32(千米)
乙船顺水速为
32+8=40(千米)
所以,乙船顺水航行360千米需要
40=9(小时)
乙船返回原地需要9小时。
列车问题
【含义】这是与列车行驶有关的一些问题,解答时要注意列车车身的长度。
火车过桥:
过桥时间=(车长+桥长)÷
车速
火车追及:
追及时间=(甲车长+乙车长+距离)÷
(甲车速-乙车速)
火车相遇:
相遇时间=(甲车长+乙车长+距离)÷
(甲车速+乙车速)
.一座大桥长2400米,一列火车以每分钟900米的速度通过大桥,从车头开上桥到车尾离开桥共需要3分钟。
这列火车长多少米?
火车3分钟所行的路程,就是桥长与火车车身长度的和。
(1)火车3分钟行多少米?
900×
3=2700(米)
(2)这列火车长多少米?
2700-2400=300(米)
3-2400=300(米)
这列火车长300米。
.一列长200米的火车以每秒8米的速度通过一座大桥,用了2分5秒钟时间,求大桥的长度是多少米?
火车过桥所用的时间是2分5秒=125秒,所走的路程是(8×
125)米,这段路程就是(200米+桥长),所以,桥长为
8×
125-200=800(米)
大桥的长度是800米。
.一列长225米的慢车以每秒17米的速度行驶,一列长140米的快车以每秒22米的速度在后面追赶,求快车从追上到追过慢车需要多长时间?
解.从追上到追过,快车比慢车要多行(225+140)米,而快车比慢车每秒多行(22-17)米,因此,所求的时间为
(225+140)÷
(22-17)=73(秒)
需要73秒。
.一列火车穿越一条长2000米的隧道用了88秒,以同样的速度通过一条长1250米的大桥用了58秒。
求这列火车的车速和车身长度各是多少?
车速和车长都没有变,但通过隧道和大桥所用的时间不同,是因为隧道比大桥长。
可知火车在(88-58)秒的时间内行驶了(2000-1250)米的路程,因此,火车的车速为每秒
(2000-1250)÷
(88-58)=25(米)
进而可知,车长和桥长的和为(25×
58)米,
因此,车长为
25×
58-1250=200(米)
这列火车的车速是每秒25米,车身长200米。
14
盈亏问题
根据一定的人数,分配一定的物品,在两次分配中,一次有余(盈),一次不足(亏),或两次都有余,或两次都不足,求人数或物品数,这类应用题叫做盈亏问题。
一般地说,在两次分配中,如果一次盈,一次亏,则有:
参加分配总人数=(盈+亏)÷
分配差
如果两次都盈或都亏,则有:
参加分配总人数=(大盈-小盈)÷
参加分配总人数=(大亏-小亏)÷
例1.给幼儿园小朋友分苹果,若每人分3个就余11个;
若每人分4个就少1个。
问有多少小朋友?
有多少个苹果?
按照“参加分配的总人数=(盈+亏)÷
分配差”的数量关系:
(1)有小朋友多少人?
(11+1)÷
(4-3)=12(人)
(2)有多少个苹果?
3×
12+11=47(个)
有小朋友12人,有47个苹果。
修一条公路,如果每天修260米,修完全长就得延长8天;
如果每天修300米,修完全长仍得延长4天。
这条路全长多少米?
题中原定完成任务的天数,就相当于“参加分配的总人数”,按照“参加分配的总人数=(大亏-小亏)÷
分配差”的数量关系,可以得知
原定完成任务的天数为
(260×
8-300×
4)÷
(300-260)=22(天)
这条路全长为
300×
(22+4)=7800(米)
这条路全长7800米。
学校组织春游,如果每辆车坐40人,就余下30人;
如果每辆车坐45人,就刚好坐完。
问有多少车?
多少人?
本题中的车辆数就相当于“参加分配的总人数”,于是就有
(1)有多少车?
(30-0)÷
(45-40)=6(辆)
(2)有多少人?
40×
6+30=270(人)
有6辆车,有270人。
15
工程问题
工程问题主要研究工作量、工作效率和工作时间三者之间的关系。
这类问题在已知条件中,常常不给出工作量的具体数量,只提出“一项工程”、“一块土地”、“一条水渠”、“一件工作”等,在解题时,常常用单位“1”表示工作总量。
解答工程问题的关键是把工作总量看作“1”,这样,工作效率就是工作时间的倒数(它表示单位时间内完成工作总量的几分之几),进而就可以根据工作量、工作效率、工作时间三者之间的关系列出算式。
工作量=工作效率×
工作时间
工作时间=工作量÷
工作效率
工作时间=总工作量÷
(甲工作效率+乙工作效率)
变通后可以利用上述数量关系的公式。
.一项工程,甲队单独做需要10天完成,乙队单独做需要15天完成,现在两队合作,需要几天完成?
题中的“一项工程”是工作总量,由于没有给出这项工程的具体数量,因此,把此项工程看作单位“1”。
由于甲队独做需10天完成,那么每天完成这项工程的1/10;
乙队单独做需15天完成,每天完成这项工程的1/15;
两队合做,每天可以完成这项工程的(1/10+1/15)。
由此可以列出算式:
1÷
(1/10+1/15)=1÷
1/6=6(天)
两队合做需要6天完成。
.一批零件,甲独做6小时完成,乙独做8小时完成。
现在两人合做,完成任务时甲比乙多做24个,求这批零件共有多少个?
设总工作量为1,则甲每小时完成1/6,乙每小时完成1/8,甲比乙每小时多完成(1/6-1/8),二人合做时每小时完成(1/6+1/8)。
因为二人合做需要[1÷
(1/6+1/8)]小时,这个时间内,甲比乙多做24个零件,所以
(1)每小时甲比乙多做多少零件?
24÷
[1÷
(1/6+1/8)]=7(个)
(2)这批零件共有多少个?
7÷
(1/6-1/8)=168(个)
这批零件共有168个。
解二
上面这道题还可以用另一种方法计算:
两人合做,完成任务时甲乙的工作量之比为
1/6∶1/8=4∶3
由此可知,甲比乙多完成总工作量的
4-3
/
4+3
=1/7
所以,这批零件共有
1/7=168(个)
一件工作,甲独做12小时完成,乙独做10小时完成,丙独做15小时完成。
现在甲先做2小时,余下的由乙丙二人合做,还需几小时才能完成?
必须先求出各人每小时的工作效率。
如果能把效率用整数表示,就会给计算带来方便,因此,我们设总工作量为12、10、和15的某一公倍数,例如最小公倍数60,则甲乙丙三人的工作效率分别是
60÷
12=5
10=6
15=4
因此余下的工作量由乙丙合做还需要
(60-5×
(6+4)=5(小时)
还需要5小时才能完成。
一个水池,底部装有一个常开的排水管,上部装有若干个同样粗细的进水管。
当打开4个进水管时,需要5小时才能注满水池;
当打开2个进水管时,需要15小时才能注满水池;
现在要用2小时将水池注满,至少要打开多少个进水管?
注(排)水问题是一类特殊的工程问题。
往水池注水或从水池排水相当于一项工程,水的流量就是工作量,单位时间内水的流量就是工作效率。
要2小时内将水池注满,即要使2小时内的进水量与排水量之差刚好是一池水。
为此需要知道进水管、排水管的工作效率及总工作量(一池水)。
只要设某一个量为单位1,其余两个量便可由条件推出。
我们设每个同样的进水管每小时注水量为1,则4个进水管5小时注水量为(1×
4×
5),2个进水管15小时注水量为(1×
2×
15),从而可知
每小时的排水量为
(1×
15-1×
5)÷
(15-5)=1
即一个排水管与每个进水管的工作效率相同。
由此可知
一池水的总工作量为
1×
5-1×
5=15
又因为在2小时内,每个进水管的注水量为
2,
所以,2小时内注满一池水
至少需要多少个进水管?
(15+1×
(1×
2)
=8.5≈9(个)
至少需要9个进水管。
16
正反比例问题
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比的比值一定(即商一定),那么这两种量就叫做成
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 小升初 应用题 专题 模块
