统计学原理作业三讲评解析.docx
- 文档编号:1746531
- 上传时间:2022-10-23
- 格式:DOCX
- 页数:14
- 大小:141.64KB
统计学原理作业三讲评解析.docx
《统计学原理作业三讲评解析.docx》由会员分享,可在线阅读,更多相关《统计学原理作业三讲评解析.docx(14页珍藏版)》请在冰豆网上搜索。
统计学原理作业三讲评解析
《统计学原理》作业(三)
一、判断题
1、抽样推断是利用样本资料对总体的数量特征进行估计的一种统计分析方法,因此不可避免的会产生误差,这种误差的大小是不能进行控制的。
(×)
2、从全部总体单位中按照随机原则抽取部分单位组成样本,只可能组成一个样本。
(×)
3、抽样估计的置信度就是表明抽样指标和总体指标的误差不超过一定范围的概率保证程度。
(√)
4、抽样误差即代表性误差和登记性误差,这两种误差都是不可避免的。
(×)
5、总体参数区间估计必须具备的三个要素是估计值、抽样误差范围、概率保证程度。
(√)
6、在一定条件下,施肥量与收获率是正相关关系。
( √ )
7、甲产品产量与单位成本的相关系数是-0.8,乙产品单位成本与利润率的相关系数是-0.95,则乙比甲的相关程度高(√)
8、利用一个回归方程,两个变量可以互相推算(×)
二、单项选择题
1、在一定的抽样平均误差条件下(A)
A、扩大极限误差范围,可以提高推断的可靠程度
B、扩大极限误差范围,会降低推断的可靠程度
C、缩小极限误差范围,可以提高推断的可靠程度
D、缩小极限误差范围,不改变推断的可靠程度
2、反映样本指标与总体指标之间的平均误差程度的指标是(C)
A、抽样误差系数B、概率度
c、抽样平均误差D、抽样极限误差
3、抽样平均误差是(C)
A、全及总体的标准差B、样本的标准差
c、抽样指标的标准差D、抽样误差的平均差
4、当成数等于(C)时,成数的方差最大
A、1B、0c、0.5D、-1
5、对某行业职工收入情况进行抽样调查,得知其中80%的职工收入在800元以下,抽样平均误差为2%,当概率为95.45%时,该行业职工收入在800元以下所占比重是(C)
A、等于78%B、大于84%
c、在此76%与84%之间D、小于76%
6、对甲乙两个工厂工人平均工资进行纯随机不重复抽样调查,调查的工人数一样,两工厂工资方差相同,但甲厂工人总数比乙厂工人总数多一倍,则抽样平均误差(A)
A、甲厂比乙厂大B、乙厂比甲厂大
c、两个工厂一样大D、无法确定
7、反映抽样指标与总体指标之间抽样误差可能范围的指标是(B )。
A、抽样平均误差;B、抽样极限误差;
C、抽样误差系数;D、概率度。
8、如果变量x和变量y之间的相关系数为1,说明两变量之间(D)
A、不存在相关关系B、相关程度很低
C、相关程度显著D、完全相关
9、一般说,当居民的收入减少时,居民的储蓄款也会相应减少,二者之间的关系是(A)
A、直线相关B、完全相关
C、非线性相关D、复相关
10、年劳动生产率x(千元)和工人工资y(元)之间的回归方程为yc=30+60x,意味着劳动生产率每提高2千元时,工人工资平均增加(B)
A、60元B、120元C、30元D、90元
11、如果变量x和变量y之间的相关系数为-1,说明两个变量之间是(B)
A、高度相关关系B、完全相关关系
C、完全不相关D、低度相关关系
12、价格不变的条件下,商品销售额和销售量之间存在着(D)
A、不完全的依存关系B、不完全的随机关系
C、完全的随机关系D、完全的依存关系
三、多项选择题
1、影响抽样误差大小的因素有(ABCD)
A、抽样调查的组织形式B、抽取样本单位的方法
C、总体被研究标志的变异程度
D、抽取样本单位数的多少
E、总体被研究标志的属性
2、在抽样推断中(ACD)
A、抽样指标的数值不是唯一的;
B、总体指标是一个随机变量;
C、可能抽取许多个样本;
D、统计量是样本变量函数;
E、全及指标又称为统计量。
3、从全及总体中抽取样本单位的方法有(BC)
A、简单随机抽样B、重复抽样
C、不重复抽样D、概率抽样
E、非概率抽样
4、在抽样推断中,样本单位数的多少取决于(ABCE)
A、总体标准差的大小B、允许误差的大小
C、抽样估计的把握程度D、总体参数的大小
E、抽样方法
5、总体参数区间估计必须具备的三个要素是(BDE)
A、样本单位数B、样本指标c、全及指标
D、抽样误差范围E、抽样估计的置信度
6、在抽样平均误差一定的条件下(AD)
A、扩大极限误差的范围,可以提高推断的可靠程度
B、缩小极限误差的范围,可以提高推断的可靠程度
c、扩大极限误差的范围,只能降低推断的可靠程度
D、缩小极限误差的范围,只能降低推断的可靠程度
E、扩大或缩小极限误差范围与推断的可靠程度无关
7、判定现象之间有无相关关系的方法是(ABC )
A、对客观现象作定性分析 B、编制相关表
C、绘制相关图 D、计算相关系数 E、计算估计标准误
8、相关分析特点有(BCDE)
A、两变量不是对等的
B、两变量只能算出一个相关系数
C、相关系数有正负号
D、两变量都是随机的
E、相关系数的绝对值介于0和1之间
9、下列属于负相关的现象是(ABD)
A、商品流转的规模愈大,流通费用水平越低
B、流通费用率随商品销售额的增加而减少
C、国民收入随投资额的增加而增长
D、生产单位产品所耗工时随劳动生产率的提高而减少
E、某产品产量随工人劳动生产率的提高而增加
10、设产品的单位成本(元)对产量(百件)的直线回归方程为yC=76-1.85x,这表示(ACE)
A、产量每增加100件,单位成本平均下降1.85元
B、产量每减少100件,单位成本平均下降1.85元
C、产量与单位成本按相反方向变动
D、产量与单位成本按相同方向变动
E、当产量为200件时,单位成本为72.3元
五、简答题:
1、什么是抽样误差?
影响抽样误差大小的因素有哪些?
2、什么是抽样平均误差和抽样极限误差?
二者有何关系?
3、请写出相关系数的简要公式,并说明相关系数的取值范围及其判断标准。
4、拟合回归方程yc=a+bx有什么前提条件?
在回归方程
yc=a+bx,参数a,b的经济含义是什么?
六、计算题
1、某企业生产一批零件,随机重复抽取400只做使用寿命试验。
测试结果平均寿命为5000小时,样本标准差均为300小时,400只中发现10只不合格。
根据以上资料计算平均数的抽样平均误差和成数的抽样平均误差。
解:
已知:
抽样平均数的平均误差:
样本成数
抽样成数的抽样平均误差
2、外贸公司出口一种食品,规定每包规格不低于150克,现在用重复抽样的方法抽取其中的100包进行检验,其结果如下:
每包重量(克)
包数
148-149
149-150
150-151
151-152
10
20
50
20
——
100
要求:
(1)以99.73%的概率估计这批食品平均每包重量的范围,以便确定平均重量是否达到规格要求;
(2)以同样的概率保证估计这批食品合格率范围。
解:
(1)根据资料计算每包重量的组中值x,统计包数f列计算表如下:
xfxfx2f
148.5101485220522.5
149.5202990447005
150.55072751132512.5
151.5203030459045
∑100150302259085
由计算表可以有:
样本平均数
样本标准差:
抽样平均误差
当F(Z)=99.73%时,即Z=3,
极限误差
该批食品平均每包重量范围:
以99.73%的概率保证,估计该批食品平均每包重量在150.04~150.56克之间.
(2)抽样合格率p==70%,
抽样平均误差=4.58%
抽样极限误差
该批食品的合格率区间:
以99.73%的概率保证,估计该批食品合格率在56.26%~83.74%之间
3、单位按简单随机重复抽样方式抽取40名职工,对其业务情况进行考核,考核成绩资料如下:
68898884868775737268758299588154797695767160916576727685899264578381787772617087
要求:
(1)根据上述资料按成绩分成以下几组:
60分以下,60-70分,70-80分,80-90分,90-100分,并根据分组整理成变量分配数列;
(2)根据整理后的变量数列,以95.45%的概率保证程度推断全体职工业务考试成绩的区间范围;(3)若其它条件不变,将允许误差范围缩小一半,应抽取多少名职工?
解:
(1)分配数列表如下:
考试成绩(分)x职工人数f比重(%)xfx2f
60以下37.51659075
60---7061539025350
70---801537.5112584375
80---901230102086700
90---10041038036100
∑401003080241600
(2)样本平均数
样本标准差
以95.45%的概率保证,估计全体职工业务考试成绩在73.66~80.34分之间。
(3)=160(名)
若其他条件不变,将允许误差缩小一半,至少要抽取160名职工
4、采用简单重复抽样的方法,抽取一批产品中的200件作为样本,其中合格品为195件。
要求:
(1)计算样本的抽样平均误差
(2)以95.45%的概率保证程度对该产品的合格品率进行区间估计(t=2)
解:
(1)抽样合格率p=,
抽样平均误差
(2)抽样极限误差
以95.45%的概率保证,估计该批产品合格率在95.3%~99.7%之间
5、某企业上半年产品产量与单位成本资料如下:
月 份 产 量(千件) 单位成本(元)
1 2 73
2 3 72
3 4 71
4 3 73
5 4 69
6 5 68
要求:
(1)计算相关系数,说明两个变量相关的密切程度。
(2)配合回归方程,指出产量每增加1000件时,单位成本平均变动多少?
(3)假定产量为6000件时,单位成本为多少元?
解:
(1)设产量为自变量x,单位成本为因变量y
序号xyx2y2xy
127345329146
237295184216
3471165041284
437395329219
5469164761276
6568254624340
合计2142679302681481
相关系数r=
=
=-0.91,
说明产品产量与单位成本之间存在高度负相关.
(2)设回归方程为:
回归系数b===-1.82,
a==77.37,
回归方程:
Yc=77.37-1.82X
回归系数的涵义:
产量
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 统计学 原理 作业 讲评 解析