断路器的选择文档格式.docx
- 文档编号:17317325
- 上传时间:2022-12-01
- 格式:DOCX
- 页数:18
- 大小:37.90KB
断路器的选择文档格式.docx
《断路器的选择文档格式.docx》由会员分享,可在线阅读,更多相关《断路器的选择文档格式.docx(18页珍藏版)》请在冰豆网上搜索。
对保护笼型电动机的断路器,瞬时整定电流等于(8-15)倍电动机额定电流,取决于被保护电动机的型号、容量和启动条件;
对于保护绕线转子电动机的断路器,瞬时整定电流等于(3-6)倍电动机额定电流,取决于被保护绕线转子电动机的型号、容量和启动条件。
(3)6倍长延时电流整定值的可返回时间大于等于电动机实际启动时间。
按启动时负载的轻重,可选用可返回时间为1、3、5、8、15S中的某一档。
3、导线保护断路器的选用
照明、生活用导线保护断路器,是指在生活建筑中用来保护配电系统的断路器,选用时应考虑:
(1)长延时整定值小于等于线路计算负载电流。
(2)瞬时动作整定值等于(6-20)倍线路计算负载电流。
断路器的额定极限和额定运行短路分断能力
用户在设计、选择低压断路器的短路分断能力时,应遵循的基本原则是:
断路器的额定短路分断能力&
sup3;
线路可能出现(预期)的短路电流。
国际电工委员会IEC947-2和我国等效采用IEC的GB14048.2《低压开关设备和控制设备低压断路器》标准规定的短路分断能力有两种;
额定极限短路分断能力Icu和额定运行短路分断能力Ics。
1.Icu和Ics的定义
分别定义如下:
Icu为按规定的试验程序所规定条件,不包括断路器继续承载其额定电流能力的分断能力;
Ics为按规定的试验程序所规定的条件,包括断路器继续承载其额定电流能力的分断能力。
cu的试验程序为otco;
Ics的试验程序为otcotco。
Ics比Icu的试验程序多了一次co。
经过程序试验,能完全分断,熄灭电弧,并无超出规定的损伤,被认为Icu试验通过,而Ics的合格标准,除与Icu相同外,还要增加温升和5%寿命次数的接通、断开额定电压、额定电流的试验,Ics试验条件更苛严。
2.Icu和Ics的关系
Icu和Ics都是断路器的一项重要技术性能指标。
从实际情况出发,根据线路保护的需要和断路器的不同结构,IEC9472和GB14048.2确定的Ics有4个或3个值,分别是25%、50%、75%和100%Icu(对A类断路器,即塑料外壳式),或50%、75%和100%Icu(对B类断路器,即万能式或称框架式)。
断路器制造厂确定其产品的Ics值,凡符合上面标准规定的Icu百分值都是有效的、合格的产品。
万能式断路器的绝大部分(不是所有规格)都是有过载长延时、短路短延时和短路瞬动的三段保护功能,能实现选择性保护。
因此大多数主干线(包括变压器的出线端)都采用它作主(保护)开关,而塑壳式断路器一般不具备短路短延时功能(仅有过载长延时和短路瞬动的二段保护),不能作选择性保护,它们只能使用于支路。
由于使用(适用)的情况不同,IEC92《船舶电气》标准建议:
具有三段保护的万能式断路器,偏重于它的Ics,而大量使用于分支线路的塑壳式断路器,应确保它有足够的Icu。
笔者对此的理解是:
主干线切除故障电流后更换新断路器要慎重,主干线停电时间较久要影响一大片用户的供电,所以发生短路故障时要求有2个co,并且还要求继续承载一段时间的额定电流;
而使用于支路的仅有二段保护的断路器,在经过极限短路电流的分断和再次的接通分断后,已完成其使命,它不再承载额定电流,可以更换新的(更换时停电的区域仅限于支路,因此影响较小),而它的Ics就可小于极限短路电流。
Ics在两类断路器上规定值也有所不同,塑壳式最小允许的Ics是25%Icu,而万能式的Ics最小是50%Icu。
Ics=Icu的断路器是很少的,即使是万能式,也很少有Ics=100%Icu[有一种采用旋转双分断(点)技术的塑壳式断路器,它的限流性能极好,短路分断能力的裕度很大,可以做到Ics=Icu,但价格很高]。
我国的DW15型万能式断路器Ics=(60%~75%)Icu,DW45智能型万能式断路器Ics=(62.5%~65%)Icu,国际上ABB公司的F系列,施耐德公司的M系列Ics也不过达到70%左右的Icu。
而塑壳式断路器,国内各种新型号的Ics大多数在(50%~75%)Icu之间。
有些厂商的广告或样本中称它的断路器Ics=Icu,如果不是限流型,则是有水分的。
选用它,最可靠、最严肃的办法是向他们索取Ics=Icu的试验证书或型式试验报告。
3.Icu和Ics的选用一台容量为1600kVA的变压器,其副边的额定电流为2312A,阻抗电压百分数uK取6%,最大预期短路电流应为38.5kA,作保护用的断路器额定短路分断能力应是&
40kA,若选DW15-2500Y的2500A或DW45-3200的2500A作主开关是能胜任的。
由于现代的动力中心的变压器与配电柜相距很近,甚至安装在一起,因此即使是支路,额定电流在100A,它的预期短路电流也是很大的。
因此,也要求线路中的塑壳断路器的短路分断能力应达到380V、40kA。
有文章断定某一新型塑壳式断路器(壳架等级电流160A,Icu380V、50kA,Ics380V、35kA)不能选用,理由是它的Ics仅35kA,小于线路预期电流38.5kA。
这是一种误解。
该型号断路器使用于支路,即使通过支路的短路电流为38.5kA,但此断路器Icu大50kA,完全可以胜任。
因此判断塑壳式断路器能否胜任某一线路保护开关,是看它的Icu能否大于线路的预期短路电流。
而它的Ics即使小一点,也无碍于它的作用的发挥。
因为短路事故多种多样,例如两相短路(其短路电流为三相短路值的二分之根号三),或者离电源较远的地方,如50m、100m,即使是三相短路,由于阻抗的原因,三相短路时,事故电流大约是50%~60%的三相最大预期值。
断路器的种类与选择
工程师们必须了解断路器的特性以确保提供正确的电路保护任何忽视电路保护设计的电气或电子产品都埋藏了故障隐患。
保护您的昂贵设备归根结底就是要对包括控制开关、电线和电源在内的整个电气系统加以保护,以避免短路和电流过大情况的发生。
确定针对某项具体应用的合适电路保护器件并不困难,但确实需要费一番思考。
如果电气和电子设备在设计中采用了规格制定得偏松的电路保护器件,则设备将极易因功率冲击而遭到损坏并导致起火的灾难性后果,反之,如果采用规格制定得偏严的电路保护器件,将会引起令人生厌的频繁跳闸现象。
目前的断路器主要有热断路器、磁断路器和通地漏泄断路器等几种。
在选择断路器时,设计师不仅需要考虑以下的电路特性,还应当考虑包括断路器的安装位置以及外壳尺寸方面的限制条件:
●施加的额定交流或直流电压
●单相、多相和极点数目
●适用的国家电气标准和安全管理机构标准
●短路分断能力
热断路器
热断路器采用一个与电路串联的双金属片。
电流在过载期间产生的热量会使双金属片变形,从而使断路器跳闸。
与保险丝相比,热保护器有一个显著的优点,就是在跳闸后能够重新复位。
它们还可以用作被保护设备的电源接通/关断开关。
随着温度的升高,热断路器的跳闸速度加快,并常常会在较低的电流电平下发生跳闸。
当断路器和系统暴露于同一热源时,这一特性往往很有用处。
在这种情况下,保护电路能够跟踪设备在更高的温度下对于增强配线保护的需求。
如果一个热断路器安装在与被保护设备分离的环境下,则变化的环境温度所造成的影响可以由一个补偿型热双金属片进行校正。
例如,位于飞机座舱外面的断路器是温度补偿型的,这样其跳闸特性不会随飞行中常见的温度波动而发生变化。
此外,由于热断路器内部固有的闩锁机理,使其对冲击和振动极不敏感。
目前,有些高性能的电路保护器件提供了专门针对极大冲击和振动环境的断路器。
需要进行热电路保护的应用包括家用电器、交通、船舶、配电盘、医疗设备、视听设备、电源和运动器械等。
磁断路器
磁断路器为大多数设计问题提供了精度和可靠性较高的成本效益型解决方案。
磁断路器的过流检测机理是只对被保护电路里的电流变化做出响应,由于其电流感应螺线管受环境温度变化的影响不大,因此磁断路器具有温度稳定性,不会像热断路器那样明显地受到环境温度变化的影响。
磁断路器没有预热阶段,因此不会减缓断路器对过载的响应速度,从过载结束到其复位之前没有冷却期。
可以从四个独立的方面对磁断路器的特性进行有针对性的调整:
断路器所需的电路;
跳闸点(以安培计);
延迟时间(以秒计)和浪涌处理能力。
对这些因素所做的调整对断路器短路分断能力的影响极小。
一般而言,目前有三种跳闸时间延迟曲线各不相同的磁断路器可供选择:
慢速、中速和快速。
当对级联电路和判别电路中的断路器进行匹配时,这些可供选择的曲线为设计师提供了很高的设计灵活性。
此外,对于常常需要承受巨大涌入电流的设备,还可以选择具备特殊涌入结构的磁断路器。
但是,当设备位置不稳定时,由于磁断路器的跳闸次数会因螺线管的运动受重力的影响而发生变化,此时热断路器或许是一个比较好的选择。
磁断路器的应用领域涵盖了很多市场,比如电信、船舶、电器、工业自动化和控制以及医疗设备。
通地漏泄保护器
通地漏泄保护器(如Carling公司的SmartGuard系列)的工作方式与磁断路器相同,能够提供用户定制的过载和短路保护级。
此外,它们采用创新电子技术进行检测并避免通地漏泄。
除了少量漏泄外,返回电源的电流与从电源流出的电流数值相等。
如果经过通地漏泄保护器后,电源流出和返回的电流值之差超过了漏泄灵敏度的设定值,则保护器将跳闸,且LED指示灯点亮,向操作人员发出提示,从而具备了“智能化”的特点。
LED指示灯清楚地显示了由于通地漏泄所导致的跳闸。
这种保护有助于避免严重的设备损坏和火灾。
其应用包括电阻和阻抗加热系统、电信、剧场照明、船舶控制台、办公设备、医疗设备、工业自动化和控制以及UPS系统。
需要考虑的一些次要因素在选择断路器时,我们不仅要关注断路器的延迟曲线等主要指标,还应重视它的很多次要功能,这些常容易被忽略的性能不仅能为一个良好的设计锦上添花,而且还能帮助工程师们为其应用设计精密的保护电路。
目前市面上有许多配备了各种可选功能的断路器,这些功能对于电路保护设计很有帮助。
下面列出的是一些较为常见的功能。
辅助接点(辅助开关):
它们是与主接点电隔离的接点,适用于报警和程序开关。
辅助接点可用于向操作人员或控制系统告警,发出警报,或在重要应用中接通备用电源。
传动:
传动器类型的选择不仅是出于美观的考虑。
具有开关速度是通/断开关两倍的传动摇杆开关的断路器能够节约成本和电路板空间。
推挽式传动器在遇到突发事件时最为稳定。
分流端子:
传统断路器被认为是“串联跳闸”的,这是因为接点、电流感应元件和负载都是串联的。
分流端子从主电路分出支路,这样可将次级负载接入。
如果初级负载发生了短路或过载,断路器将跳闸并切断两个负载的电源。
与辅助接点不同,分流端子是接到位于开关接点和电流感应元件之间的断路器载流通路的,这意味着第二个负载不受过载或短路保护。
可以采用一个独立的断路器来保护次级电路,否则该电路只可用于具有内置保护电路的设备。
复式控制(遥控跳闸或继电器跳闸):
复式控制断路器将两个彼此电隔离的感应元件组合起来以实现多项功能。
例如,复式控制断路器可利用遥控传动器或感应器来进行传统的过流保护以及电路断接。
遥控跳闸是复式控制的一个例子,通常被称为“继电器跳闸”。
低压跳闸:
这是断路器中一个独立的电压敏感元件,如果电压降到预定值以下,它将使主接点开路。
具有低电压跳闸的开关断路器被广泛用于有线连接电器的通/断控制。
安全管理部门要求这些电器在发生掉电时必须切断电源,以避免电源恢复时电器突然重新启动的危险。
自动跳闸:
一个自动跳闸的断路器在故障期间不会一直保持闭合—因为开关装置不会因强行保持传动器接通而失效。
在一个完全自动跳闸的设计中,当传动器被保持在“接通”位置时,主接点在发生故障之后将始终保持开路。
一些被称为“循环自动跳闸”的断路器在故障期间不能强行保持接通状态,但如果传动器一直处在“接通”的位置,则它们将周期性地接通和断开。
如果断路器安装在容易够得着的地方(即未封闭),则应采用自动跳闸断路器。
自动复位:
对于断路器不易够着的应用来说,在冷却期后自动复位的断路器是一个良好的选择。
此时若指定使用可自动再起动的设备,则发生危险的可能性很大。
关于断路器选择的几个要点
一、不同的负载应选用不同类型的断路器
最常见的负载有配电线路、电动机和家用与类似家用(照明、家用电器等)三大类。
以此相对应的便有配电保护型、电动机保护型和家用及类似家用保护型的断路器。
这三类断路器的保护性质和保护特性是不相同的。
对配电型断路器而言,它有A类和B类之分:
A类为非选择型,B类为选择型。
所谓选择型是指断路器具有过载长延时、短路短延时和短路瞬时的三段保护特性。
万能式(又称框架式)断路器中的DW15系列、DW17(ME)系列、AH系列和DW40、DW45系列中大部分是B型,而DZ5、DZ15、DZ20、TO、TG、CM1、TM30及HSM1等系列和万能式DW15、DW17的某些规格因仅有过载长延时、短路瞬时的二段保护,它们是属于非选择型的A类断路器。
选择性保护,如图1所示。
图1
当F点短路时,只有靠近F点的QF2断路器动作,而上方位的QF1断路器不动作,这就是选择性保护(由于QF1不动作,就使未发生故障的QF3、QF4支路保持供电)。
如果QF2和QF1都是A类断路器,则F点发生短路,短路电流值达一定值时,QF1、QF2同时动作,QF1断路器回路及其下的支路全部停电,就不是选择性保护了。
能够实现选择性保护的原因是,QF1为B类断路器,它具有短路短延时性能,当F点短路时,短路电流流过QF2支路,也流过QF1回路,QF2的瞬时动作脱扣器动作(通常它的全分断时间不大于0.02s),因QF1的短延时,QF1在0.02s内不会动作(它的短延时≥0.1s或0.2、0.3、0.4s)。
在QF2动作切断故障线路时,整个系统就恢复了正常。
可见,如果要达到选择性保护的要求,上一级的断路器应选用具有三段保护的B型断路器。
对于直接保护电动机的电动机保护型断路器,它只要有过载长延时和短路瞬时的二段保护性能就够了,也就是说它可选择A类断路器(包括塑壳式和万能式),DZ5、DZ15、TO、TG、GM1、TM30、HSM1及DW15等系列除有配电保护的性能外,它们的630A及以下规格均有保护电动机的功能。
家用和类似场所的保护(过去又称它为导线保护或照明保护),也是一种小型的A类断路器,其典型产品有C45N、PX200C、HSM8等等。
配电(线路)、电动机和家用等的过电流保护断路器,因保护对象(如变压器、电线电缆、电动机和家用电器等)的承受过载电流的能力(包括电动机的起动电流和起动时间等)有差异,因此,选用的断路器的保护特性也是不同的。
(1)表1为配电保护型断路器的反时限断开特性
表1
通过电流名称
整定电流倍数
约定时间/h
In≤63AIn>63A
约定不脱扣电流
1.05In
≥1≥2
约定脱扣电流
1.30In
<1<2
返回特性电流
3.0In
可返回时间/s
5
8
12
注:
可返回特性:
考虑到配电线路内有电动机群,由于电动机仅是其负载的一部分,且一群电动机不会同时起动,故确定为3In(In为断路器的额定电流,In≥IL,IL为线路额定电流),对断路器进行试验,当试验电流为3In时保持5s(In≤40A时),8s(40A<In<250A时),12s(In>250A时),然后将电流返回至In,断路器应不动作,这就是返回特性。
(2)表2为电动机保护型断路器的反时限断开特性
表2
约定时间
1.0In
≥2h
1.2In
<2h
1.5In
*
7.2In
**
*按电动机负载性质可以选2、4、8、12min之内动作,一般的选2~4min。
**7.2In也是一种可返回特性,它必须躲过电动机的起动电流(5~7倍In),Tp为延时时间,按电动机的负载性质可选动作时间Tp为2s<Tp≤10s、4s<Tp≤10s、6s<Tp≤20s和9s<Tp≤30s,一般选用2s<Tp≤10s或4s<Tp≤10s。
(3)配电保护型的瞬动整定电流为10In(误差为±
20%),In为400A及以上规格,可以在5In和10In中任选一种(由用户提出,制造厂整定);
电动机保护型的瞬动整定电流为12In,一般设计时In可以等于电动机的额定电流。
(4)表3为家用和类似场所用断路器的过载脱扣特性
表3
脱扣器型式
断路器的脱扣器额定电流In
通过电流
规定时(脱扣或不脱扣极限时间)
预期结果
B、C、D
≤63
1.13In
≥1h
不脱扣
>63
1.45In
<1h
脱扣
≤32
2.55In
1s~60s
>32
1s~120s
B
所有值
3In
≥0.1s
C
5In
D
10In
<0.1s
50In
注:
B、C、D型是瞬时脱扣器的型式:
B型脱扣电流>3~5In,C型脱扣电流>5~10In,D型脱扣电流>10~50In。
用户可根据保护对象的需要,任选它们中的一种。
(5)B类断路器的短路短延时特性DW15型断路器:
3~10(Inm为1600A时,Inm为壳架等级电流),3~6In(Inm为2500A、4000A时),短延时时间为0.2或0.5s。
ME型
断路器:
3~12In,短延时时间0~0.3s可调。
DW45型断路器:
0.4~15In,短延时时间0.1、0.2、0.3和0.4s可调。
在进行工程设计时,应根据不同的负载对象来选择不同保护特性(如上所述)的断路器,以免因选用不当造成严重后果。
在实践中最容易混淆的是电动机负载保护误选为配电保护型或家用保护型。
小型断路器(MCB)也有电动机保护型,如天津梅兰日兰的C45AD等,它们的保护特性应符合表2。
二、选择不同类型短路分断能力的断路器来适应不同的线路预期短路电流(当I在相同的情况时)的需要断路器的选用原则是:
断路器的短路分断能力≥线路的预期短路电流。
假设某电源(SL710/0.4kV变压器)的容量为1600kVA,二次电流为2312A,其出线端5m处的
短路电流为42.96kA。
某一支路的额定电流为125A,由于此支路离变压器很近,如在10m处,则此支路的断路器需要考虑采用HSM1_125H型塑壳式断路器(它的极限短路分断能力为400V、50kA)。
但是离变压器50m处,由于汇流排等的电阻和电抗值影响,50m处的短路电流已经降到34.5kA,而100m处,降为28.8kA。
对此就可选择HSM1_125M型塑壳式断路器(它的极限短路分断能力为400V、35kA)。
现在国内许多断路器生产厂家,对同一壳架等级电流的短路分断能力分为E、S、M、H、L(杭州之江开关厂的HSM1系列)或C、L、M、H(常熟开关厂的CM1系列)或S、H、R、U(天津低压电器公司的TM30系列)等级别。
其中,E为经济型,S为标准型,M为中短路分断型,H为高分断型,L为限流型,C为经济型,L为低分断型;
M为高分断型,H为超高分断型;
S为标准型,H为高分断型,R为限流型,U为超高分断型。
以HSM1_125型塑壳断路器为例,E型的极限短路分断能力为400V、15kA,S型为400V、25kA,M型为400V、35kA,H型为400V、50kA。
它们的价格也相差很大,如以E型为1,则S型为1.2,M型为1.4,H型为2,即购买一台H型的断路器的钱,可以购买二台E型。
用户在设计选用时,不必人为地加上所谓保险系数,以免造成浪费。
三、关于断路器的极限短路分断能力、运行短路分断能力和短时耐受电流极限短路分断能力(Icu),是指在一定的试验参数(电压、短路电流、功率因数)条件下,经一定的试验程序,能够接通、分断的短路电流,经此通断后,不再继续承载其额定电流的分断能力。
它的试验程序为0—t(线上)C0(“0”为分断,t为间歇时间,一般为3min,“C0”表示接通后立即分断)。
试检后要验证脱扣特性和工频耐压。
运行短路分断能力(Ics),是指在一定的试验参数(电压、短路电流和功率因数)条件下,经一定的试验程序,能够接通、分断的短路电流,经此通断后,还要继续承载其额定电流的分断能力,它的试验程序为0—t(线上)C0—t(线上)C0。
短时耐受电流(Icw),是指在一定的电压、短路电流、功率因数下,忍受0.05、0.1、0.25、0.5或1s而断路器不允许脱扣的能力,Icw是在短延时脱扣时,对断路器的电动稳定性和热稳定性的考核指标,它是针对B类断路器的,通常Icw的最小值是:
当In≤2500A时,它为12In或5kA,而In>2500A时,它为30kA(DW45_2000的Icw为400V、50kA,DW45_3200的Icw为400V、65kA)。
运行短路分断能力的试验条件极为苛刻(一次分断、二次通断),由于试后它还要继续承载额定电流(其次数为寿命数的5%),因此它不单要验证脱扣特性、工频耐压,还要验证温升。
IEC947_2(以及1997新版IEC60947_2)和我国国家标准GB140482规定,Ics可以是极限短路分断能力Icu数值的25%、50%、75%和100%(B类断路器为50%、75%和100%,B类无25%是鉴于它多数是用于主干线保护之故)。
上文提到的选择断路器的一个重要原则是断路器的短路分断能力≥线路的预期短路电流,这个断路器的短路分断能力通常是指它的极限短路分断能力。
无论A类或B类断路器,它们的运行短路分断能力绝大多数是小于它的极限短路分断能力Icu的。
A类:
DZ20系列Ics=50%~77%I
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 断路器 选择