天津市中考第二次模拟考试数学试题含答案.docx
- 文档编号:1729988
- 上传时间:2022-10-23
- 格式:DOCX
- 页数:54
- 大小:247.03KB
天津市中考第二次模拟考试数学试题含答案.docx
《天津市中考第二次模拟考试数学试题含答案.docx》由会员分享,可在线阅读,更多相关《天津市中考第二次模拟考试数学试题含答案.docx(54页珍藏版)》请在冰豆网上搜索。
天津市中考第二次模拟考试数学试题含答案
天津市中考第二次模拟考试数学试题含答案
中学数学二模模拟试卷
一.选择题(每题3分,满分36分)
1.﹣的倒数是( )
A.B.﹣C.D.﹣
2.下列标志的图形中,是轴对称图形的是但不是中心对称图形的是( )
A.B.
C.D.
3.下列运算中,结果是a6的式子是( )
A.a2•a3B.a12﹣a6C.(a3)3D.(﹣a)6
4.下列调查方式,你认为最合适的是( )
A.了解北京市每天的流动人口数,采用抽样调查方式
B.旅客上飞机前的安检,采用抽样调查方式
C.了解北京市居民”一带一路”期间的出行方式,采用全面调查方式
D.日光灯管厂要检测一批灯管的使用寿命,采用全面调查方式
5.若x=﹣4,则x的取值范围是( )
A.2<x<3B.3<x<4C.4<x<5D.5<x<6
6.已知|a|=3,b2=16,且|a+b|≠a+b,则代数式a﹣b的值为( )
A.1或7B.1或﹣7C.﹣1或﹣7D.±1或±7
7.无论a取何值时,下列分式一定有意义的是( )
A.B.C.D.
8.在平面直角坐标系中,将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,则点A′的坐标是( )
A.(﹣1,1)B.(﹣1,﹣2)C.(﹣1,2)D.(1,2)
9.如图,△ABO∽△CDO,若BO=6,DO=3,CD=2,则AB的长是( )
A.2B.3C.4D.5
10.如图,AB为半圆O的直径,C是半圆上一点,且∠COA=60°,设扇形AOC、△COB、弓形BmC的面积为S1、S2、S3,则它们之间的关系是( )
A.S1<S2<S3B.S2<S1<S3C.S1<S3<S2D.S3<S2<S1
11.如图,已知菱形ABCD中,∠A=40°,则∠ADB的度数是( )
A.40°B.50°C.60°D.70°
12.已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是( )
A.abc>0B.b2﹣4ac<0C.9a+3b+c>0D.c+8a<0
二.填空题(满分18分,每小题3分)
13.据测算,我国每年因沙漠造成的直接经济损失超过5400000万元,这个数用科学记数法表示为 万元.
14.已知扇形的弧长为4π,圆心角为120°,则它的半径为 .
15.如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC,若AB=2cm,∠BCD=22°30′,则⊙O的半径为 cm.
16.如图,将直线y=x向下平移b个单位长度后得到直线l,l与反比例函数y=(x>0)的图象相交于点A,与x轴相交于点B,则OA2﹣OB2的值为 .
17.若一次函数y=(1﹣2m)x+m的图象经过点A(x1,y1)和点B(x2,y2),当x1<x2时,y1<y2,且与y轴相交于正半轴,则m的取值范围是 .
18.如图
(1)是重庆中国三峡博物馆,又名重庆博物馆,中央地方共建国家级博物馆图
(2)是侧面示意图.某校数学兴趣小组的同学要测量三峡博物馆的高GE.如
(2),小杰身高为1.6米,小杰在A处测得博物馆楼顶G点的仰角为27°,前进12米到达B处测得博物馆楼顶G点的仰角为39°,斜坡BD的坡i=1:
2.4,BD长度是13米,GE⊥DE,A、B、D、E、G在同一平面内,则博物馆高度GE约为 米.(结果精确到1米,参考数据tan27°≈0.50,tan39°≈0.80)
三.解答题
19.(6分)计算:
(1)sin30°﹣cos45°+tan260°
(2)2﹣2+﹣2sin60°+|﹣|
20.(6分)求不等式组的非负整数解.
21.(8分)如图,在平行四边形ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD的中点,延长AE至G,使EG=AE,连接CG.
(1)求证:
△ABE≌△△CDF;
(2)当线段AB与线段AC满足什么数量关系时,四边形EGCF是矩形?
请说明理由.
22.(8分)今年西宁市高中招生体育考试测试管理系统的运行,将测试完进行换算统分改为计算机自动生成,现场公布成绩,降低了误差,提高了透明度,保证了公平.考前张老师为了解全市初三男生考试项目的选择情况(每人限选一项),对全市部分初三男生进行了调查,将调查结果分成五类:
A、实心球(2kg);B、立定跳远;C、50米跑;D、半场运球;E、其它.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:
(1)将上面的条形统计图补充完整;
(2)假定全市初三毕业学生中有5500名男生,试估计全市初三男生中选50米跑的人数有多少人?
(3)甲、乙两名初三男生在上述选择率较高的三个项目:
B、立定跳远;C、50米跑;D、半场运球中各选一项,同时选择半场运球、立定跳远的概率是多少?
请用列表法或画树形图的方法加以说明并列出所有等可能的结果.
23.(9分)随着经济水平的不断提升,越来越多的人选择到电影院去观看电影,体验视觉盛宴,并且更多的人通过淘票票,猫眼等网上平台购票,快捷且享受更多优惠,电影票价格也越来越便宜.2018年从网上平台购买5张电影票的费用比在现场购买3张电影票的费用少10元,从网上平台购买4张电影票的费用和现场购买2张电影票的费用共为190元.
(1)请问2018年在网上平台购票和现场购票的每张电影票的价格各为多少元?
(2)2019年“元旦”当天,南坪上海城的“华谊兄弟影院”按照2018年在网上平台购票和现场购票的电影票的价格进行销售,当天网上和现场售出电影票总票数为600张.“元旦”假期刚过,观影人数出现下降,于是该影院决定将1月2日的现场购票的价格下调,网上购票价格保持不变,结果发现现场购票每张电影票的价格每降价0.5元,则当天总票数比“元旦”当天总票数增加4张,经统计,1月2日的总票数中有通过网上平台售出,其余均由电影院现场售出,且当天票房总收益为19800元,请问该电影院在1月2日当天现场购票每张电影票的价格下调了多少元?
24.(9分)如图所示,△ABC内接于⊙O,AB是⊙O的直径,点D在⊙O上,过点C的切线交AD的延长线于点E,且AE⊥CE,连接CD.
(1)求证:
DC=BC;
(2)若AB=5,AC=4,求tan∠DCE的值.
25.(10分)若关于x的二次函数y=ax2+bx+c(a,b,c为常数)与x轴交于两个不同的点A(x1,0),B(x2,0)与y轴交于点C,其图象的顶点为点M,O是坐标原点.
(1)若A(﹣2,0),B(4,0),C(0,3)求此二次函数的解析式并写出二次函数的对称轴;
(2)如图1,若a>0,b>0,△ABC为直角三角形,△ABM是以AB=2的等边三角形,试确定a,b,c的值;
(3)设m,n为正整数,且m≠2,a=1,t为任意常数,令b=3﹣mt,c=﹣3mt,如果对于一切实数t,AB≥|2t+n|始终成立,求m、n的值.
26.(10分)已知:
如图,抛物线y=ax2+bx+3与坐标轴分别交于点A,B(﹣3,0),C(1,0),点P是线段AB上方抛物线上的一个动点.
(1)求抛物线解析式;
(2)当点P运动到什么位置时,△PAB的面积最大?
(3)过点P作x轴的垂线,交线段AB于点D,再过点P作PE∥x轴交抛物线于点E,连接DE,请问是否存在点P使△PDE为等腰直角三角形?
若存在,求点P的坐标;若不存在,说明理由.
参考答案
一.选择题
1.解:
﹣的倒数是:
﹣.
故选:
B.
2.解:
A、不是轴对称图形,不是中心对称图形,不合题意;
B、不是轴对称图形,不是中心对称图形,不合题意;
C、不是轴对称图形,不是中心对称图形,不合题意;
D、是轴对称图形,不是中心对称图形,符合题意.
故选:
D.
3.解:
A、a2•a3=a5,故本选项错误;
B、不能进行计算,故本选项错误;
C、(a3)3=a9,故本选项错误;
D、(﹣a)6=a6,正确.
故选:
D.
4.解:
A、了解北京市每天的流动人口数,采用抽样调查方式,正确;
B、旅客上飞机前的安检,采用全面调查方式,故错误;
C、了解北京市居民”一带一路”期间的出行方式,抽样调查方式,故错误;
D、日光灯管厂要检测一批灯管的使用寿命,采用抽样调查方式,故错误;
故选:
A.
5.解:
∵36<37<49,
∴6<<7,
∴2<﹣4<3,
故x的取值范围是2<x<3.
故选:
A.
6.解:
∵|a|=3,
∴a=±3;
∵b2=16,
∴b=±4;
∵|a+b|≠a+b,
∴a+b<0,
∴a=3,b=﹣4或a=﹣3,b=﹣4,
(1)a=3,b=﹣4时,
a﹣b=3﹣(﹣4)=7;
(2)a=﹣3,b=﹣4时,
a﹣b=﹣3﹣(﹣4)=1;
∴代数式a﹣b的值为1或7.
故选:
A.
7.解:
当a=0时,a2=0,故A、B中分式无意义;
当a=﹣1时,a+1=0,故C中分式无意义;
无论a取何值时,a2+1≠0,
故选:
D.
8.解:
∵将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,
∴点A′的横坐标为1﹣2=﹣1,纵坐标为﹣2+3=1,
∴A′的坐标为(﹣1,1).
故选:
A.
9.解:
∵△ABO∽△CDO,
∴=,
∵BO=6,DO=3,CD=2,
∴=,
解得:
AB=4.
故选:
C.
10.解:
作OD⊥BC交BC与点D,
∵∠COA=60°,
∴∠COB=120°,则∠COD=60°.
∴S扇形AOC=;
S扇形BOC=.
在三角形OCD中,∠OCD=30°,
∴OD=,CD=,BC=R,
∴S△OBC=,S弓形==,
>>,
∴S2<S1<S3.
故选:
B.
11.解:
∵四边形ABCD是菱形,
∴AB∥CD,∠ADB=∠CDB,
∴∠A+∠ADC=180°,
∵∠A=40°,
∴∠ADC=140°,
∴∠ADB=×140°=70°,
故选:
D.
12.解:
A、∵二次函数的图象开口向下,图象与y轴交于y轴的正半轴上,
∴a<0,c>0,
∵抛物线的对称轴是直线x=1,
∴﹣=1,
∴b=﹣2a>0,
∴abc<0,故本选项错误;
B、∵图象与x轴有两个交点,
∴b2﹣4ac>0,故本选项错误;
C、∵对称轴是直线x=1,与x轴一个交点是(﹣1,0),
∴与x轴另一个交点的坐标是(3,0),
把x=3代入二次函数y=ax2+bx+c(a≠0)得:
y=9a+3b+c=0,故本选项错误;
D、∵当x=3时,y=0,
∵b=﹣2a,
∴y=ax2﹣2ax+c,
把x=4代入得:
y=16a﹣8a+c=8a+c<0,
故选:
D.
二.填空题
13.解:
5400000=5.4×106万元.
故答案为5.4×106.
14.解:
因为l=,l=4π,n=120,
所以可得:
4π=,
解得:
r=6,
故答案为:
6
15.解:
连结OB,如图,
∵∠BCD=22°30′,
∴∠BOD=2∠BCD=45°,
∵AB⊥CD,
∴BE=AE=AB=×2=,△BOE为等腰直角三角形,
∴OB=BE=2(cm).
故答案为:
2.
16.解:
∵平移后解析式是y=x﹣b,
代入y=得:
x﹣b=,
即x2﹣bx=5,
y=x﹣b与x轴交点B的坐标是(b,0),
设A的坐标是(x,y),
∴OA2﹣OB2
=x2+y2﹣b2
=x2+(x﹣b)2﹣b2
=2x2﹣2xb
=2(x2﹣xb)
=2×5=10,
故答案为:
10.
17.解:
∵当1<2时,y1<y2,
∴函数值y随x的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 天津市 中考 第二次 模拟考试 数学试题 答案