最新整理统计过程控制Spc案例分析docWord文档下载推荐.docx
- 文档编号:17265421
- 上传时间:2022-11-30
- 格式:DOCX
- 页数:22
- 大小:213.27KB
最新整理统计过程控制Spc案例分析docWord文档下载推荐.docx
《最新整理统计过程控制Spc案例分析docWord文档下载推荐.docx》由会员分享,可在线阅读,更多相关《最新整理统计过程控制Spc案例分析docWord文档下载推荐.docx(22页珍藏版)》请在冰豆网上搜索。
量
特
性
在方格纸上作出控制图:
控制图
图
R图
说明
操作人
班组长
质量工程师
横坐标为样本序号,纵坐标为产品质量特性。
图上有三条平行线:
实线CL:
中心线
虚线UCL:
上控制界限线
LCL:
下控制界限线。
三.控制图的设计原理
1.正态性假设:
绝大多数质量特性值服从或近似服从正态分布。
2.3准则:
99。
73%。
3.小概率事件原理:
小概率事件一般是不会发生的。
4.反证法思想。
四.控制图的种类
1.按产品质量的特性分
(1)计量值()
(2)计数值(p,pn,u,c图)。
2.按控制图的用途分:
(1)分析用控制图;
(2)控制用控制图。
五.控制图的判断规则
1.分析用控制图:
规则1判稳准则-----绝大多数点子在控制界限线内(3种情况);
规则2判异准则-----排列无下述现象(8种情况)。
2.控制用控制图:
规则1每一个点子均落在控制界限内。
规则2控制界限内点子的排列无异常现象。
[案例1]p控制图
某半导体器件厂2月份某种产品的数据如下表
(2)(3)栏所表示,根据以往记录知,稳态下的平均不合格品率,作控制图对其进行控制.
数据与p图计算表
组号
(1)
样本量
(2)
不合格品数D(3)
不合格品率p(4)
P图的UCL(5)
1
85
2
0.024
0.102
83
5
0.060
0.103
3
63
0.016
0.112
4
60
0.050
0.114
90
0.022
0.100
6
80
0.013
0.104
7
97
0.031
0.098
8
91
0.011
9
94
0.021
0.099
10
0.012
11
55
0.117
12
92
13
14
95
0.032
15
81
16
82
0.085
17
75
0.040
0.106
18
57
0.018
0.116
19
0.066
20
67
0.030
0.110
21
86
0.035
0.101
22
99
0.080
0.097
23
76
0.105
34
93
0.086
25
72
0.069
0.107
26
0.093
27
28
0.026
小计
2315
[解]
步骤一:
预备数据的取得,如上边表所示.
步骤二:
计算样本不合格品率
步骤三:
计算p图的控制线
由于本例中各个样本大小不相等,所以必须对各个样本分别求出其控制界线.例如对第一个样本n1=85,有
UCL=0.102CL=0.0389LCL=-0.024
此处LCL为负值,取为零.作出它的SPC图形.
UCL
CL
LCL
[案例2]为控制某无线电元件的不合格率而设计p图,生产过程质量要求为平均不合格率≤2%。
解:
一.收集收据
在5M1E充分固定并标准化的情况下,从生产过程中收集数据,见下表所表示:
某无线电元件不合格品率数据表
组号
样本大小
样本中不合格品数
不合格品率
835
1.0
808
1.5
780
0.8
504
2.4
860
1.6
600
822
1.3
814
618
703
1.1
850
2.2
709
700
1.4
500
3.2
830
1.7
798
0.9
813
818
581
550
807
595
1.2
24
760
620
总和
17775
248
平均值
711
二.计算样本中不合格品率:
列在上表.
三.求过程平均不合格品率:
四.计算控制线p图:
从上式可以看出,当诸样本大小不相等时,UCL,LCL随的变化而变化,其图形为阶梯式的折线而非直线.为了方便,若有关系式:
同时满足,也即相差不大时,可以令,,使得上下限仍为常数,其图形仍为直线.
本例中,,诸样本大小满足上面条件,故有控制线为:
p图:
五.制作控制图:
以样本序号为横坐标,样本不合格品率为纵坐标,做p图.
六.描点:
依据每个样本中的不合格品率在图上描点.
七.分析生产过程是否处于统计控制状态
从图上可以看到,第14个点超过控制界限上界,出现异常现象,这说明生产过程处于失控状态.尽管=1.40%<
2%,但由于生产过程失控,即不合格品率波动大,所以不能将此分析用控制图转化为控制用控制图,应查明第14点失控的原因,并制定纠正措施.
[案例3]某手表厂为了提高手表的质量,应用排列图分析造成手表不合格的各种原因,发现---停摆占第一位.为了解决停摆问题,再次应用排列图分析造成停摆的原因,结果发现主要是由于螺栓脱落造成的,而后者是有螺栓松动造成.为此,厂方决定应用控制图对装配作业中的螺栓扭矩进行过程控制.
[分析]螺栓扭矩是计量特征值,故可选用正态分布控制图,又由于本例是大量生产,不难取得数据,故决定选用灵敏度高的图.
[解]按照下列步骤建立图
步骤一.根据合理分组原则,取25组预备数据,见下表.
步骤二.计算各样本组的平均值,例如第一组样本的平均值为
=(154+174+164+166+162)/5=164.0
步骤三.计算各样本的极差
步骤四.计算样本总均值
步骤五.计算R图与的参数
(1)先计算R图的参数
样本容量n=5时,D4=2.114,D3=0
代入R图公式
均值控制图
极差控制图
例2的原始数据与图计算表.
序号
样本观察值
∑Xij
R
备
注
Xi1
Xi2
Xi3
Xi4
Xi5
154
174
164
166
162
820
164.0
170
828
165.6
168
160
816
163.2
832
166.4
153
165
167
812
162.4
158
172
824
164.8
169
159
175
167.0
810
162.0
156
152
159.6
934
166.8
148
804
160.8
147
151
775
155.0
超限
162.8
792
158.4
181
30
166.0
826
165.2
162.6
157
823
164.6
803
160.6
∑
4081.8
357
平均
163.272
14.280
(2)可见现在R图判稳,故接着再建立均值图。
第13组数据是例外值,需要用判定准则(判稳/判异)判断。
另外,由表可见,R图中的第17组R=30出界,于是再次执行20字方针:
“查出异因,采取措施,保证消除,纳入标准,不再出现”,消除异因纳入标准之后,应再收集35组数据,重新计算,但为了简化本例题,而采用舍去第17组数据的方法(注:
舍弃数据的办法不是不能用,而必须是调整没有改变原有的4M1E的关系,例如刚才对第13组数据的舍弃,异因对后面的数据没有影响),重新计算如下:
R图:
由表知道,R图可以判稳,计算均值控制图如:
将23组样本的极差值与均值分别打点与R图和图上(下图表示),根据判稳准则,知此过程的波动情况与均值都处于稳态.
[注意]严格地讲,23组数据根本不能运用判稳准则,一般建议收集35—40组数据,运用第二条判稳准则来判断过程是否处于稳态.
步骤六.与规格进行比较.已知给定质量规格为TL=100,YU=200.
现把全部预备数据作直方图并与规格进行比较.如下图所表示.
由此可见,数据分布与规格比较均有余量,但其平均值并未对准规格中心,因此还可以加以调整以便提高过程适应能力指数,减少不合格品率.调整后要重新计算图.
SU=200
145150155160165170175180185SL=100m=150u=163.69
步骤七.延长上述图的控制线,进入控制用控制图阶段,对过程进行日常控制.
[例4]某厂生产一种零件,其长度要求为49.50±
0.10mm,生产过程质量要求为Cp≥1,为对该过程实行连续监控,试设计图。
某零件长度值数据表(单位:
mm)
49.47
49.46
49.52
49.51
49.485
0.06
49.48
49.53
49.55
49.49
49.516
0.07
49.50
49.500
49.496
49.45
49.56
49.530
0.11
49.57
49.506
0.12
49.505
0.10
49.502
49.526
0.09
49.44
49.54
49.512
49.494
49.490
49.504
0.05
49.510
0.08
49.524
总和值
平均值
1237.669
2.00
49.5068
0.0800
一。
收集数据并加以分组
在5M1E充分固定并标准化的情况下,从生产过程中收集数据。
每隔2h,从生产过程中抽取5个零件,测量其长度,组成一个大小为5的样本,一共收集25个样本(数据见上表)。
一般来说,制作图,每组样本大小n≤10,组数k≥25。
二.计算每组的样本均值及极差(列于上表)。
三.计算总平均和极差平均
四.计算控制线
图:
R图:
其中系数A2,D3,D4均从控制图系数表中查得。
五.制作控制图
在方格纸上分别做图和R图,两张图画在同一张纸上,以便对照分析。
图在上,R图在下,纵轴在同一直线上,横轴相互平行并且刻度对齐。
本题中R图的下控制界限线LCL<0,但R要求R≥0,故LCL可以省略。
根据各个样本的均值和极差Ri在控制图上描点(如上).
七.分析生产过程是否处于统计控制状态.
利用分析用控制图的判断原则,经分析生产过程处于统计控制状态。
八.计算过程能力指数
1.求Cp值
2.求修正系数。
3.求修正后的过程能力指数
偿若过程质量要求为过程能力指数不小于1,则显然不满足要求,于是不能将分析用控制图转化为控制用控制图,应采取措施提高加工精度。
九.过程平均不合格品率p
=2-0.9966-0.9991
=0.43%.-
[例5]某化工厂生产某种化工产品,为了控制产品中主要成分含量而设置质量控制点。
若对主要成分含量的要求为:
12.8±
0.7%,过程质量要求为不合格品率不超过5%,试设计X-Rs图。
一.收集数据:
在5M1E充分固定和并标准化的情况下,从生产过程中收集数据,每次测一个收据,共需k≥25个数据。
每隔24小时从生产过程中抽取一个样品化验,共抽取25个数据。
二.计算移动极差:
三.求平均值:
。
某化工厂产品主成分含量数据表
Xi
12.1
12.4
13.2
13.3
13.0
13.5
12.5
12.8
13.1
Rsi
-
0.3
0.1
0.6
0.5
13.4
12.2
12.6
12.7
0.4
0.2
总和:
平均值:
X图:
Rs图:
X控制图
根据每次测得的X和Rs值,分别在X图和Rs图上描点.注意第一个数据只有x而无Rs值.
七.分析生产过程是否处于统计控制状态:
是处于统计控制状态。
八.计算过程能力指数
1.求Cp值:
2.求修正系数k:
3.求修正后的过程能力指数Cpk:
Cpk=(1-k)Cp=(1-0.07)×
0.66=0.61.
p<5%,满足生产过程质量要求,于是可以将此分析用控制图转化为控制用控制图,对今后的生产过程进行连续监控。
[案例6]漆包线针孔收据如表所示,生产过程质量要求每米长的漆包线平均针孔数≤4,试作出控制图。
漆包线针孔数据表
1.0
4.0
5.0
3.0
1.3
1.5
3.8
2.3
0.8
3.1
1.2
3.3
1.7
4.7
1.8
2.0
3.5
35.4
114
1.42
3.22
在5M1E充分固定并标准化的情况下,从生产过程中收集数据,见上表所表示:
二.计算样本中单位缺陷数:
列在上表.
三.求过程平均缺陷数:
四.计算控制线u图:
u图:
经分析看,生产过程处于统计控制状态.
八.转化为控制用控制图
本例中,满足过程质量要求,且生产过程处于统计过程控制状态,故可以将上述分析转化为控制用控制图。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 最新 整理 统计 过程 控制 Spc 案例 分析 doc