最新北师大版八年级数学上册知识点总结.doc
- 文档编号:1724480
- 上传时间:2022-10-23
- 格式:DOC
- 页数:34
- 大小:949.33KB
最新北师大版八年级数学上册知识点总结.doc
《最新北师大版八年级数学上册知识点总结.doc》由会员分享,可在线阅读,更多相关《最新北师大版八年级数学上册知识点总结.doc(34页珍藏版)》请在冰豆网上搜索。
最新北师大版八年级数学上册知识点总结
第一章勾股定理
1.勾股定理:
直角三角形两直角边的平方和等于斜边的平方;即。
2.勾股定理的证明:
用三个正方形的面积关系进行证明(两种方法)。
3.勾股定理逆定理:
如果三角形的三边长,,满足,那么这个三角形是直角三角形。
满足的三个正整数称为勾股数。
第二章实数
1.平方根和算术平方根的概念及其性质:
(1)概念:
如果,那么是的平方根,记作:
;其中叫做的算术平方根。
(2)性质:
①当≥0时,≥0;当<0时,无意义;②=;③。
2.立方根的概念及其性质:
(1)概念:
若,那么是的立方根,记作:
;
(2)性质:
①;②;③=
3.实数的概念及其分类:
(1)概念:
实数是有理数和无理数的统称;
(2)分类:
按定义分为有理数可分为整数的分数;按性质分为正数、负数和零。
无理数就是无限不循环小数;小数可分为有限小数、无限循环小数和无限不循环小数;其中有限小数和无限循环小数称为分数。
4.与实数有关的概念:
在实数范围内,相反数,倒数,绝对值的意义与有理数范围内的意义完全一致;在实数范围内,有理数的运算法则和运算律同样成立。
每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数,即实数和数轴上的点是一一对应的。
因此,数轴正好可以被实数填满。
5.算术平方根的运算律:
(≥0,≥0);(≥0,>0)。
第三章图形的平移与旋转
1.平移:
在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。
平移不改变图形大小和形状,改变了图形的位置;经过平移,对应点所连的线段平行且相等;对应线段平行且相等,对应角相等。
2.旋转:
在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转。
这点定点称为旋转中心,转动的角称为旋转角。
旋转不改变图形大小和形状,改变了图形的位置;经过旋转,图形点的每一个点都绕旋转中心沿相同方向转动了相同和角度;任意一对对应点与旋转中心的连线所成的角都是旋转角;对应点到旋转中心的距离相等。
3.作平移图与旋转图。
第四章四边形性质的探索
1.多边形的分类:
特殊
菱形
矩形
特殊
正方形
多边形
三角形
等腰三角形、直角三角形
四边形
特殊
梯形
特殊
等腰梯形
边数多于4的多边形
特殊
正多边形
平行四边形
特殊
2.平行四边形、菱形、矩形、正方形、等腰梯形的定义、性质、判别:
(1)平行四边形:
两组对边分别平行的四边形叫做平行四边形。
平行四边形的对边平行且相等;对角相等,邻角互补;对角线互相平分。
两条对角线互相平分的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形。
(2)菱形:
一组邻边相等的平行四边形叫做菱形。
菱形的四条边都相等;对角线互相垂直平分,每一条对角线平分一组对角。
四条边都相等的四边形是菱形;对角线互相垂直的平行四边形是菱形;一组邻边相等的平行四边形是菱形;对角线互相平分且垂直的四边形是菱形。
菱形的面积等于两条对角线乘积的一半(面积计算,即S菱形=L1*L2/2)。
(3)矩形:
有一个内角是直角的平行四边形叫做矩形。
矩形的对角线相等;四个角都是直角。
对角线相等的平行四边形是矩形;有一个角是直角的平行四边形是矩形。
直角三角形斜边上的中线等于斜边长的一半;在直角三角形中30°所对的直角边是斜边的一半。
(4)正方形:
一组邻边相等的矩形叫做正方形。
正方形具有平行四边形、菱形、矩形的一切性质。
(5)等腰梯形同一底上的两个内角相等,对角线相等。
同一底上的两个内角相等的梯形是等腰梯形;对角线相等的梯形是等腰梯形;对角互补的梯形是等腰梯形。
(6)三角形中位线:
连接三角形相连两边重点的线段。
性质:
平行且等于第三边的一半
3.多边形的内角和公式:
(n-2)*180°;多边形的外角和都等于。
4.中心对称图形:
在平面内,一个图形绕某个点旋转,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形。
第五章位置的确定
1.直角坐标系及坐标的相关知识。
2.点的坐标间的关系:
如果点A、B横坐标相同,则∥轴;如果点A、B纵坐标相同,则∥轴。
3.将图形的纵坐标保持不变,横坐标变为原来的倍,所得到的图形与原图形关于轴对称;将图形的横坐标保持不变,纵坐标变为原来的倍,所得到的图形与原图形关于轴对称;将图形的横、纵坐标都变为原来的倍,所得到的图形与原图形关于原点成中心对称。
第六章一次函数
1.一次函数定义:
若两个变量间的关系可以表示成(为常数,)的形式,则称是的一次函数。
当时称是的正比例函数。
正比例函数是特殊的一次函数。
2.作一次函数的图象:
列表取点、描点、连线,标出对应的函数关系式。
3.正比例函数图象性质:
经过;>0时,经过一、三象限;<0时,经过二、四象限。
4.一次函数图象性质:
(1)当>0时,随的增大而增大,图象呈上升趋势;当<0时,随的增大而减小,图象呈下降趋势。
(2)直线与轴的交点为,与轴的交点为。
(3)在一次函数中:
>0,>0时函数图象经过一、二、三象限;>0,<0时函数图象经过一、三、四象限;<0,>0时函数图象经过一、二、四象限;<0,<0时函数图象经过二、三、四象限。
(4)在两个一次函数中,当它们的值相等时,其图象平行;当它们的值不等时,其图象相交;当它们的值乘积为时,其图象垂直。
4.已经任意两点求一次函数的表达式、根据图象求一次函数表达式。
5.运用一次函数的图象解决实际问题。
第七章二元一次方程组
1.二元一次方程及二元一次方程组的定义。
2.解方程组的基本思路是消元,消元的基本方法是:
①代入消元法;②加减消元法;③图象法。
3.方程组解应用题的关键是找等量关系。
4.解应用题时,按设、列、解、答四步进行。
5.每个二元一次方程都可以看成一次函数,求二元一次方程组的解,可看成求两个一次函数图象的交点。
第八章数据的代表
1.算术平均数与加权平均数的区别与联系:
算术平均数是加权平均数的一种特殊情况,(它特殊在各项的权相等),当实际问题中,各项的权不相等时,计算平均数时就要采用加权平均数,当各项的权相等时,计算平均数就要采用算术平均数。
2.中位数和众数:
中位数指的是n个数据按大小顺序(从大到小或从小到大)排列,处在最中间位置的一个数据(或最中间两个数据的平均数)。
众数指的是一组数据中出现次数最多的那个数据。
应知应会的知识点
因式分解
1.因式分解:
把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解;注意:
因式分解与乘法是相反的两个转化.
2.因式分解的方法:
常用“提取公因式法”、“公式法”、“分组分解法”、“十字相乘法”.
3.公因式的确定:
系数的最大公约数·相同因式的最低次幂.
注意公式:
a+b=b+a;a-b=-(b-a);(a-b)2=(b-a)2;(a-b)3=-(b-a)3.
4.因式分解的公式:
(1)平方差公式:
a2-b2=(a+b)(a-b);
(2)完全平方公式:
a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b)2.
5.因式分解的注意事项:
(1)选择因式分解方法的一般次序是:
一提取、二公式、三分组、四十字;
(2)使用因式分解公式时要特别注意公式中的字母都具有整体性;
(3)因式分解的最后结果要求分解到每一个因式都不能分解为止;
(4)因式分解的最后结果要求每一个因式的首项符号为正;
(5)因式分解的最后结果要求加以整理;
(6)因式分解的最后结果要求相同因式写成乘方的形式.
6.因式分解的解题技巧:
(1)换位整理,加括号或去括号整理;
(2)提负号;(3)全变号;(4)换元;(5)配方;(6)把相同的式子看作整体;(7)灵活分组;(8)提取分数系数;(9)展开部分括号或全部括号;(10)拆项或补项.
7.完全平方式:
能化为(m+n)2的多项式叫完全平方式;对于二次三项式x2+px+q,有“x2+px+q是完全平方式Û”.
分式
1.分式:
一般地,用A、B表示两个整式,A÷B就可以表示为的形式,如果B中含有字母,式子叫做分式.
2.有理式:
整式与分式统称有理式;即.
3.对于分式的两个重要判断:
(1)若分式的分母为零,则分式无意义,反之有意义;
(2)若分式的分子为零,而分母不为零,则分式的值为零;注意:
若分式的分子为零,而分母也为零,则分式无意义.
4.分式的基本性质与应用:
(1)若分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变;
(2)注意:
在分式中,分子、分母、分式本身的符号,改变其中任何两个,分式的值不变;
即
(3)繁分式化简时,采用分子分母同乘小分母的最小公倍数的方法,比较简单.
5.分式的约分:
把一个分式的分子与分母的公因式约去,叫做分式的约分;注意:
分式约分前经常需要先因式分解.
6.最简分式:
一个分式的分子与分母没有公因式,这个分式叫做最简分式;注意:
分式计算的最后结果要求化为最简分式.
7.分式的乘除法法则:
.
8.分式的乘方:
.
9.负整指数计算法则:
(1)公式:
a0=1(a≠0),a-n=(a≠0);
(2)正整指数的运算法则都可用于负整指数计算;
(3)公式:
,;
(4)公式:
(-1)-2=1,(-1)-3=-1.
10.分式的通分:
根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分;注意:
分式的通分前要先确定最简公分母.
11.最简公分母的确定:
系数的最小公倍数·相同因式的最高次幂.
12.同分母与异分母的分式加减法法则:
.
13.含有字母系数的一元一次方程:
在方程ax+b=0(a≠0)中,x是未知数,a和b是用字母表示的已知数,对x来说,字母a是x的系数,叫做字母系数,字母b是常数项,我们称它为含有字母系数的一元一次方程.注意:
在字母方程中,一般用a、b、c等表示已知数,用x、y、z等表示未知数.
14.公式变形:
把一个公式从一种形式变换成另一种形式,叫做公式变形;注意:
公式变形的本质就是解含有字母系数的方程.特别要注意:
字母方程两边同时乘以含字母的代数式时,一般需要先确认这个代数式的值不为0.
15.分式方程:
分母里含有未知数的方程叫做分式方程;注意:
以前学过的,分母里不含未知数的方程是整式方程.
16.分式方程的增根:
在解分式方程时,为了去分母,方程的两边同乘以了含有未知数的代数式,所以可能产生增根,故分式方程必须验增根;注意:
在解方程时,方程的两边一般不要同时除以含未知数的代数式,因为可能丢根.
17.分式方程验增根的方法:
把分式方程求出的根代入最简公分母(或分式方程的每个分母),若值为零,求出的根是增根,这时原方程无解;若值不为零,求出的根是原方程的解;注意:
由此可判断,使分母的值为零的未知数的值可能是原方程的增根.
18.分式方程的应用:
列分式方程解应用题与列整式方程解应用题的方法一样,但需要增加“验增根”的程序.
数的开方
1.平方根的定义:
若x2=a,那么x叫a的平方根,(即a的平方根是x);注意:
(1)a叫x的平方数,
(2)已知x求a叫乘方,已知a求x叫开方,乘方与开方互为逆运算.
2.平方根的性质:
(1)正数的平方根是一对相反数;
(2)0的平方根还是0;
(3)负数没有平方根.
3.平方根的表示方法:
a的平方根表示为和.注意:
可以看作是一个数,也可以认为是一个数开二次方的运算.
4.算术平方根:
正数a的正的平方根叫a的算术平方根,表示为.注意:
0的算术平方根还是0.
5.三
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 最新 北师大 八年 级数 上册 知识点 总结