求解电场强度13种方法附例题.docx
- 文档编号:17214869
- 上传时间:2023-04-24
- 格式:DOCX
- 页数:16
- 大小:194.02KB
求解电场强度13种方法附例题.docx
《求解电场强度13种方法附例题.docx》由会员分享,可在线阅读,更多相关《求解电场强度13种方法附例题.docx(16页珍藏版)》请在冰豆网上搜索。
求解电场强度13种方法附例题
求解电场强度方法分类赏析
一.必会的基本方法:
1.运用电场强度定义式求解
例1•质量为m、电荷量为q的质点,在静电力作用下以恒定速率v沿圆弧从A点运动
到B点,,其速度方向改变的角度为B(弧度),AB弧长为s,求AB弧中点的场强E。
【解析】:
质点在静电力作用下做匀速圆周运动,则其所需的向心力由位于圆心处的点
电荷产生电场力提供。
由牛顿第二定律可得电场力
2
vs
=m。
由几何关系有r=—,
r
2F2
所以f=m—,根据电场强度的定义有E=匚=巴_
sqqs
。
方向沿半径方向,指向由
场源电荷的电性来决定。
2.运用电场强度与电场差关系和等分法求解
例2(2012安徽卷)•如图1-1所示,在平面直角坐标系中,有方向平行于坐标平面的匀强电场,其中坐标原点O处的电势为0V,点A处的电势为6V,点B处的电势为3V,则电场强度的大小为A
A.200V/m
C.100V/m
A11CITI)
B.
D.
200屈/m
10^/3V/m
警山)J?
(C9L)
a•
亦mI
C3丿
(1)在匀强电场中两点间的电势差U=Ed,d为两点沿电场强度方向的距离。
在一些非强电场中可以通过取微元或等效的方法来进行求解。
(2若已知匀强电场三点电势,则利用“等分法”找出等势点,画出等势面,确定电场线,再由匀强电场的大小与电势差的关系求解。
3.运用“电场叠加原理”
例3(2010海南).如右图
圆弧的圆心,MOP60
这时O点电场强度的大小为
求解
2,M、N和P是以MN为直径的半圈弧上的三点,O点为半
.电荷量相等、符号相反的两个点电荷分别置于M、N两点,
E1;若将N点处的点电荷移至P
MO
*60°
则O点的场场强大小变为e2,
E1与E2之比为B
B.2:
1
.必备的特殊方法:
4.运用平衡转化法求解
例4.一金属球原来不带电,
C.
现沿球的直径的延长线放置
图3
一均匀带电的细杆MN,如图3所示。
金属球上感应电荷产生的电场在球内直径上a、b、c
三点的场强大小分别为Ea、Eb、Ec,三者相比()
A.Ea最大B.Eb最大
C.Ec最大D.Ea=Eb=Ec
【解析】:
导体处于静电平衡时,其内部的电场强度处处为零,故在球内任意点,感应
电荷所产生的电场强度应与带电细杆MN在该点产生的电场强度大小相等,方向相反。
均匀
带电细杆MN可看成是由无数点电荷组成的。
a、b、c三点中,c点到各个点电荷的距离最
近,即细杆在c点产生的场强最大,因此,球上感应电荷产生电场的场强c点最大。
故正确
选项为Co
点评:
求解感应电荷产生的电场在导体内部的场强,转化为求解场电荷在导体内部的
场强问题,即E感=-E外(负号表示方向相反)。
5.运用“对称法”(又称“镜像法”)求解
例5.(2013新课标I)如图4,一半径为R的圆盘上均匀分布着电荷量为Q的电荷,
.已知b点处的场强为零,贝Ud点处场强
10q
B.k丽
Q+g
9Q+q
C.k启
D.k甸
【解析】
:
点电荷+q在b点场强为E1、薄板在
叠加引起的,
且两者在此处产生的电场强度大小相等,
根据对称性可知,均匀薄板在d处所形成的电场强度大小也为
为R,在a点处有一电荷量为q(q>0)的固定点电荷的大小为(k为静电力常量)
E2,方向水平向左;点
电荷在d点场强E3=
Gy,方向水平向左。
根据叠加原理可知,
(3R)
d点场Ed=E2+E3=
在垂直于圆盘且过圆心c的轴线上有a、b、d三个点,a和b、b和c、c和d间的距离均
10kq
。
9R2
点评:
对称法是利用带电体电荷分布具有对称性,或带电体产生的电场具有对称性的
特点来求合电场强度的方法。
通常有中心对称、轴对称等。
图6
例7如图6所示,在一个接地均匀导体球的右侧P
点距球心的距离为d,球半径为R.o在P点放置一个电荷量为+q的点电荷。
试求导体球感应电荷在P点的电场强
度大小。
析与解:
如图6所示,感应电荷在球上分布不均匀,靠近P一侧较密,关于OP对称,因此感应电荷的等效分
布点在OP连线上一点P'。
设\P'距离O为r,导体球接地,故球心O处电势为零。
根据电
势叠加原理可知,导体表面感应电荷总电荷量Q在O点引起的电势与点电荷q在O点引导
起的电势之和为零,即恰嚳0,即感应电荷量Q=Rq。
同理,Q与q在球面上任
意点引起的电势叠加之后也为零,即
,其
kQkq
R22Rrcosr22Rdcosd2
中a为球面上任意一点与O连线和OP的夹角,具有任意性。
将Q代入上式并进行数学变
空间,z0的空间为真空。
将电荷为q的点电荷置于z轴上z=-处,则在xOy平面上会产
生感应电荷。
空间任意一点处的电场皆是由点电荷
已知静电平衡时导体内部场强处处为零,则在
q和导体表面上的感应电荷共同激发的。
z轴上z-处的场强大小为(k为静电力常
2
量)
D.k警
9-2
.4q.4q.32q
A.k2b.k2C.k2
-29-29-2
【解析】:
求金属板和点电荷产生的合场强,显然用现在的公式直接求解比较困难。
能
否用中学所学的知识灵活地迁移而解决呢?
当然可以。
由于xOy平面是无穷大导体的表面,
换后得d2r2-R4=(2Rrd2-2R3d)cosa,由于对于任意a角,该式都成立,因此,r满足的关
电势为0,而一对等量异号的电荷在其连线的中垂线上电势也为0,因而可以联想成图6中
所示的两个等量异号电荷组成的静电场等效替代原电场。
根据电场叠加原理,容易求得
z-点的场强,Ek令k丄k40^,故选项D正确。
2
(2)2(3-)29h2
\
(2)
点评:
(1)等效法的实质在效果相同的情况下,利用问题中某些相似或相同效果进行知
识迁移的解决问题方法,往往是用较简单的因素代替较复杂的因素。
(2)本题也可以用排除法求解.仅点电荷q在z—处产生的场强就是k-q,而合场
2.h2
所示。
所以,
a点电场强度
Ea=kq[2
(Id)
(I
d)
7运用“微元法”求解
例7.(2006?
甘肃).ab是长为I的均匀带电细杆,Pi、P2是位于ab所在直线上的两点,位置如图7所示.ab上电荷产生的静电场在Pi处的场强大小为Ei,在P2处的场强大小为E2.则以下说法正确的是()
A两处的电场方向相同,E1>E2B两处的电场方向相反,E1>E2
C两处的电场方向相同,E1vE2D两处的电场方向相反,E1vE2.
【解析】:
将均匀带电细杆等分为很多段,每段可看作点电荷,由于细杆均匀带电,我们取
a关于P1的对称点a',则a与a'关于P1点的电场互相抵消,整个杆对于P1点的电场,仅仅相对于a'l部分对于P1的产生电场•而对于P2,却是整个杆都对其有作用,所以,P2点的场强大.设细杆带正电,根据场的叠加,这些点电荷在P1的合场强方向向左,在P2的合场强方向向右,且E1VE2.故选D.
点评:
(1)因为只学过点电荷的电场或者匀强电场,而对于杆产生的电场却没有学过,因
而需要将杆看成是由若干个点构成,再进行矢量合成.
(2)微元法就是将研究对象分割成许多微小的单位,或从研究对象上选取某一“微元”加
以分析,找出每一个微元的性质与规律,然后通过累积求和的方式求出整体的性质与规律。
严格的说,微分法是利用微积分的思想处理物理问题的一种思想方法
(a)
(b)
例8如图7(a)所示,一个半径为R的均匀带电细圆环,总量为Q。
求圆环在其轴线上与环心O距离为r处的P产生的场强。
析与解:
圆环上的每一部分电荷在P点都产生电场,整个圆环在P所建立电场的场强
等于各部分电荷所产生场强的叠加。
如图7(b)在圆环上取微元厶I,其所带电荷量厶q=
—△l,在P点产生的场强:
2R
AE=£=^QJ2r2R22R(rR)
整个圆环在P点产生的电场强度为所有微元产生的场强矢量和。
根据对称性原理可,
所有微元在P点产生场强沿垂直于轴线方向的分量相互抵消,所以整个圆环在P点产生场
r_kQrr2R2(r2R2)3
8•运用“割补法”求解
例8.如图8所示,用长为L的金属丝弯成半径为r的圆弧,但在A、B之间留有宽度为d的间隙,且d远远小于r,将电量为Q的正电荷均为分布于金属丝上,求圆心处的电场强度。
【解析】:
假设将这个圆环缺口补上,并且已补缺部分的电荷密度与原有缺口的环体上的电荷密度一样,这样就形成一个电荷均匀分布的完整带电环,环上处于同一直径两端的微小部分所带电荷可视为两个相应点的点电荷,它们在圆心0处产生的电场叠加后合场强为零。
根据对称性可知,带电小段,由题给条件可视为点电荷,它在圆心0处的场强
是可求的。
若题中待求场强为吕,则Ei+E2=0。
设原缺口环所带电荷的线密度为
=Q/(2r-d),则补上的那一小段金属丝带电量
2
Q=d,在0处的场强E=KQ/r,由日+已=0可得:
巳=-Ei,负号表示E>与日反向,
中各微元产生的场强沿轴线方向分量之和,即
kQl
Ep=SlEcos0=工2亍
背向圆心向左。
例9如图8(a)所示,将表面均匀带正电的半球,沿线分成两部分,然后将这两部分移开很远的距离,设分开后的球表面仍均匀带电。
试比较A点与A〃点电场强度的大小。
析与解:
如图8(b)所示,球冠上正电荷在A点产生的电场强度为巳、球层面上正电荷在A''点产生电场强度为E2。
球冠与球层两部分不规则带电体产生的电场强度,无法用所学公式直接进行计算或比较。
于是,需要通过补偿创造出一个可以运用已知规律进行比较的
条件。
Av
在球层表面附着一个与原来完全相同的带正电半球体,如图
原理可知,在A"点产生电场强度E3>E2。
若将球冠与补偿后的球缺组成一个完整球体,则则均匀带电球体内电场强度处处为零可知,E1与E3大小相等,方向相反。
由此可以判断,
8(c)所示,显然由叠加
(b)
2R(rR)
球冠面电荷在A点产生的电场强度为Ei大于球层面电荷在A"点产生电场强度E2。
9运用“极值法”求解
例9.如图9所示,两带电量增色为+Q的点电荷相距2L,MN是两电荷连线的中垂线,求MN上场强的最大值。
【解析】:
用极限分析法可知,两电荷间的中点0处的场强为零,在中垂线MN处的无穷
远处电场也为零,所以MN上必有场强的最大值。
最常规方法找出所求量的函数表达式,再求极值。
点评:
物理学中的极值问题可分为物理型和数学型两类。
物理型主要依据物理概念、定理、定律求解。
数学型则是在根据物理规律列方程后,依靠数学中求极值的知识求解。
本题属于
数学型极值法,对数学能力要求较高,求极值时要巧妙采用数学方法才能解得。
10运用“极限法”求解例10(2012安徽卷).如图11-1所示,半径为R的均匀带电圆形平板,单位面积带电量为
,其轴线上任意一点P(坐标为x)的电场强度可以由库仑定律和电场强度的叠加原理求
X
出:
E2k[12”],方向沿x轴。
现考虑单位面积带电量为0的无限大均匀
(R2x2)
带电平板,从其中间挖去一半径为r圆板,在Q处形成的场强为E2k0。
的圆版,如
B.2k
0(7
21/2
x)
0(r2
2、1/2
x)
C
\r
D.2k0一
x
0
图11-2所示。
则圆孔轴线上任意一点Q(坐标为x)的电场强度为
【解析
2]:
Rfg的圆板,在Q处形成的场强为
E2k0。
当挖去圆板rf0时,坐标x
圆板,在Q处形成的场强为E2k0。
而挖去的半径为r的圆板在Q点形成的场强为
处的场强应为E2k0,将r=0代入选项,只有A符合。
点评:
极限思维法是一种科学的思维方法,在物理学研究中有广泛的应用。
我们可以将该物
理量或它的变化过程和现象外推到该区域内的极限情况(或极端值),使物理问题的本质迅速
暴露出来,再根据己知的经验事实很快得出规律性的认识或正确的判断。
11•运用“图像法”求解
例11(2011北京理综)•静电场方向平行于x轴,其电势擬x的分布可简化为如图12所示的折线,图中g和d为已知量。
一个带负电的粒子在电场中以x=0为中心,沿x轴方向做周期性运动。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 求解 电场 强度 13 方法 例题