VAR模型与在投资组合中的应用Word格式文档下载.docx
- 文档编号:17211612
- 上传时间:2022-11-28
- 格式:DOCX
- 页数:18
- 大小:48.90KB
VAR模型与在投资组合中的应用Word格式文档下载.docx
《VAR模型与在投资组合中的应用Word格式文档下载.docx》由会员分享,可在线阅读,更多相关《VAR模型与在投资组合中的应用Word格式文档下载.docx(18页珍藏版)》请在冰豆网上搜索。
结果显示在考虑交易成本的条件下CPPI策略只能维持最低价值,而VBPI能在很大程度上解释组合保护条约的内涵;
同时两种策略都能够对冲风险下行带来的损失,保险价值和置信水平越高,则限制风险下行的效果越明显。
在国内,VaR作为一种新的衡量风险的方法,主要运用在资本市场中。
彭寿康在2003年利用上证A股指数、上证30指数收益率,用VaR的历史模拟法对股价指数进行了考察,结果表明我国股价指数收益率存在明显的尖峰厚尾特征,用历史模拟法和Iosistic分布模型比较适合度量股价指数的市场风险。
目前,基于VaR度量金融风险已成为国外大多数金融机构广泛采用的衡量金融风险大小的方法。
VaR模型提供了衡量市场风险和信用风险的大小,不仅有利于金融机构进行风险管理,而且有助于监管部门有效监管。
2.投资组合优化问题的研究现状
投资组合优化理论最早源于马克维茨的组合选择理论,目的在于通过多样化的投资来分散风险。
目前学术界以均值-方差组合优化模型为基础,衍生出一系列组合优化模型,如考虑VaR、CVaR等因素,在国际上的研究进展有:
GordonJ.Alexandera,AlexandreM.Baptistab在2002年就将VaR运用到投资组合选择中,通过对均值-VaR模型四个方面的研究来证明其优越性。
第一,对比了均值-方差模型和均值-VaR模型的有效前沿的变化;
第二,怎么将均值-VaR与期望效用函数最大求解相结合;
对比机构运用方差和VaR分别代替风险时的最优化结果,进行实际经济含义的验证。
RobertJ.Elliott、TakKuenSiu和AlexBadescu在2010年提出了一种基于马尔科夫链主导控制下的BS经济考虑下的均值方差组合优化模型的解决方式。
他们认为主流的马克维茨的均值方差模型是基于均值和方差这两个静态变量的数学模型,只考虑了单一时期经济内的组合最优化,并且这种假设只有在收益率分布符合正态假定,同时经济体的效用函数是二次函数时才有效。
在基于马尔科夫链的模型中连续时间和马尔科夫链的假定暗含着经济体的不同状态,通过分离定理和随即最大化原则,可以放宽马尔科夫链的限制,为均值方差模型提供一种更直接详细的解。
投资组合优化理论在国内主要的运用是结合沪深股市的股票组合,对组合的风险进行衡量,以达到降低风险的目的;
或是结合交易费用、卖空等因素下的最有投资策略解,国内主要的研究现状如下:
王波、高岳林在2008年将基于VaR的条件风险价值CVaR运用到中国沪深两市的组合风险管理中,因为CVaR可以度量置信水平下的平均损失,可以很好地处理厚尾问题。
在实证中选取沪深股市的16只股票构成投资组合,考虑市场不允许卖空和整手买入的约束机制下建立CVaR投资组合,运用差分进化法进行求解,通过计算不同收益阈值下的买入量、损失值、收益值、资金投入量等有效地验证了CVaR的有效性。
蒋翠侠、许启发、X世英在2013年提出由于金融资产收益多数具有的非正态性和厚尾分布,同时消费者的效用函数可能是二阶以上函数时,需要考虑更高阶矩的时变特性,为此建立基于多目标优化技术和效用理论的高阶距动态投资模型。
实证中通过对全球几个主要股票市场的研究发现:
金融市场收益率存在高阶矩、并且具有时变性,对组合投资决策有显著的影响。
二、VaR理论概述
风险管理的首要任务是选定合适的风险度量方法。
市场上的风险度量方法很多,主要有资产收益率的标准差σ法、β系数、判定系数R、及在险价值VaR法。
而VaR凭借其独特优势成为国际上风险管理的主流方法,下面我们将详细介绍VaR的理论及其优越性。
(一)VaR的定义
VaR(ValueatRisk)即在险价值,衡量投资者对某项金融资产在Δt的持有期内,给定置信水平c的条件下,投资组合P的最大损失值是多少,用公式表示为:
其中,ΔP=P−P为在时间内的损益函数;
P0为期初价值;
Pt为期末价值。
VaR的定义中首要涉及持有期和置信水平的设定。
常用的置信水平是99%、95%、90%,风险管理部门会根据自己的风险偏好来选择置信水平。
比如社保基金、养老基金等机构对风险比较敏感,就会要求相对较高的置信水平,而如股票型基金等追求高风险高收益的机构,则会选择相对低一点的置信水平。
持有期一般与投资组合波动率的大小呈正比,持有期越长,波动率越大。
期货市场及衍生品市场对风险波动比较敏感,适合以每日为周期计算VaR,其他一些期限较长的头寸如养老基金等可以每周作为计算周期。
(二)VaR的计算原理
假定投资组合的期初价值为P0,在Δt的投资期限内收益率为R,则期末价值为P=P0(1+R)。
在置信度为c的条件下,投资组合的最低价值P*=P0(1+R*),R*假定为持有期内的最低收益率。
此时,可以算出投资组合最低价值状态下相对于其均值的风险差值,即为相对VaR,公示表示为:
也可以计算出最低价值相对于期初状态时的风险差值,即为绝对VaR,用公式表示为:
由定义可以看出,求解VaR的实质就是求解一段时期内在一定的置信水平下,投资组合的最低收益值P*或者最低收益率R*。
假定投资组合的年收益率是随机变量,服从均值为μ和波动率为σ的分布。
同时假定投资组合的年收益率与投资期限无关,则在的持有期限内,组合的收益率和方差分别μΔt和Δtσ2。
此时相对VaR为:
所以,只要求出在置信水平c下的R*或者P*,VaR就迎刃而解。
在这里,我们要考虑到收益率R*所服从的分布,分为一般分布和正态分布两种。
(1)一般分布条件下
假定未来投资收益P的概率密度函数是f(p),在给定置信水平c,投资组合未来的最低价值P*可以表示为:
在一般分布条件下,对于分布的离散或是连续、瘦尾或是厚尾都没有限制,任何分布状况都适用。
(2)正态分布条件下:
由于正态分布的很多特性可以将VaR的计算大大简化,是一种更优的计算方法。
假定标准正态分布密度函数为ϕ(ε),投资组合的最低价值
,此时
一般为负数,则
其中,a(a>
0)是标准正态分布条件下置信水平c的分位数。
同时,推出最低收益率R*表示为:
则可以计算出持有期限内的绝对和相对VaR:
(三)VaR的计算方法
由于VaR的计算涉及到收益率的分布假定问题,目前计算方法主要有两大不同的类别:
参数法和非参数法。
参数法是假定收益率服从随机独立的正态分布为前提的,包括方差-协方差法和蒙特卡洛模拟法;
非参数法则不对收益率的分布做任何假定,主要为历史模拟法。
下面将主要介绍下历史模拟法和蒙特卡洛模拟法的主要思想。
1.历史模拟法
历史模拟法对于市场风险因子的统计分布假定很少,是一种独立的非参数化的方法,主要理想是通过模拟市场风险因子的历史变化来构造投资组合的未来收益的概率分布,进而通过置信水平确定的分位数确定VaR。
主要的步骤如下:
a.确定风险因子,并用风险因子表示投资组合的价值估价公式;
b.根据风险因子在过去T+1个时期内的历史表现数据,可以计算出T个实际价值变化率。
然后结合投资者设定的基准日的风险因子的实际值就可以得到下一个持有期N个市场风险因子的可能值;
c.利用估值的公式,用得到的T个可能的市场风险因子的数值,计算T个下一持有期假定的组合价值,减去当前组合的价值,即为T个潜在的损益;
d.将T个损益值按从大到小排列,选择置信水平如95%,倒数(1-95%)*N即为VaR值。
由于历史模拟法是根据模型设定的市场因子的实际历史价格数据作为样本进行模拟,并以此代替未来的价格分布,因此对数据数量的要求比较高,只适用于大样本数据。
2.蒙特卡洛模拟法
蒙特卡洛(MonteCarlo)又被称为随机抽样法,其主要的思想是概率原理,当需要判断某个结果发生的概率,或是某个随机变量的期望值时,就通过计算机模拟实验过程,模拟大量实验得到事件发生的频率,或是随机变量的均值。
计算时假定资产价格的变动是一种随机过程,通过计算机模拟一段时间内资产价格的随机变动路径,使得最后产生的价格路径近似等于真实过程,以此计算出未来收益率,进一步计算出VaR。
一般情况下,模拟价格随即路径时假定符合几何布朗运动(GBM),因此是一种参数与半参数相结合的方法。
蒙特卡洛模拟法计算VaR是最有效的,不仅能够处理线性分布,还可以解释非线性价格风险、波动性风险、肥尾及极端事件等。
但是由于其生成的随机数列可能是伪随机的,使得结果可能产生误差。
(四)VaR成为风险管理的主流工具
相对于其他的风险管理方法,VaR最大的优势在于,它能够将金融机构面临的风险敞口在一定的概率下,以直观的数字展现出来,以便于更好的理解分析。
同时,基于VaR的衍生指标CVaR和MVaR能够更加深入地衡量投资组合的风险分布和单只个股对组合风险的影响。
目前,随着VaR风险管理历年的转变,它已经成为金融机构资本配置、管理风险的重要依据,也成为监管者提供了更好的风险管理标准。
VaR应用理念的转变:
有消极管理到积极管理随着2004年的巴塞尔协议对风险管理提出新的标准以来,各大金融机构开始运用VaR进行风险管理,它的应用理念也在慢慢转变。
最早的时候VaR只是作为一种衡量风险的方式,便于向管理层和决策者汇报,是一种消极被动地运用;
随后,管理者发现可以运用VaR进行主动的风险调控,进行绩效评估或是为优化资源配置提供依据,此时VaR已经演变成为一种主动的积极的管理策略。
1.作为风险控制的工具,调整风险头寸结构
VaR把风险量化和金融机构传统的风险控制方式如总额限制、头寸限制、止损限制等方法结合在一起,通过对预期收益和风险的调整进行风险控制。
这一方式不仅适用于金融机构、也适用于一般的公司。
例如在基金公司运作体系中,基金管理人运用VaR风险控制,将会很好地改善基金的风险状况。
对于基金管理人来说,绩效决定着基金产品的市场销售状况,越来越多的基金管理人开始选择量化地风险分析模型来衡量基金投资组合中的风险分布。
VaR的延伸指标边际VaR、成分VaR进一步把组合整体的风险细化到单个成分股的风险贡献中,成为未来投资组合风险管理的一种趋势。
目前在国际上,一些大投资银行机构如花旗、德意志银行在自身运用VaR风险管理的同时,也开始研发一些风险管理产品,客户可以直接按照自己的条件和需求运用软件计算VaR。
2.作为风险预算与资源配置的依据
VaR在深入分析头寸结构的风险分布后,可以为管理者的投资项目的资产配置提供优化的依据。
比如像养老基金、社保基金等对风险要求必要严格的机构,在进行投资之前都要对项目进行风险评估、根据结果合理地分配资金,使得风险和收益达到最优的结构。
目前市场上在涉及到多个资产的投资组合的风险管理中,管理者往往会通过马克维茨的均值-方差组合优化模型计算出最小方差投资组合,以达到风险一定下的收益最大化,或是收益一定的条件下方差最小化。
随着VaR广泛运用,考虑将VaR代替方差作为衡量风险下行的标准,形成均值-VaR优化模型,通过非线性的优化模型,求得最小VaR投资组合,这也将是本文研究的主体部分。
(五)均值-VaR组合优化模型
在马克维茨的均值-方差模型中,用方差来刻画投资组合的风险,但是只能说明投资组合风险的偏离程度,并不能准确地说明偏离的方向,而投资者最关心的是资产价格向下波动时带来的风险损失。
而VaR正是基于概率原理刻画了资产价格下行带来的最大损失值,因而可以用VaR代替方差来描述投资组合的风险,由此形成了均值-VaR组合优化模型:
其中:
是给定的目标期望收益率;
是标准正态分布对应的置信水平c下的分位数。
将VaR的表达式化简为:
带入到均值-方差模型确定的有效前沿中:
推出均值-VaR模型的有效前沿方程:
三、实证数据
在介绍完论文涉及的VaR理论和计算方法之后,我们开始进入实证分析部分。
具体的思路是将VaR的理论运用到证券市场的股票投资组合风险管理中,通过分析VaR在投资组合风险分析中的应用来说明VaR在现实市场中的适用性和有效性。
具体过程如下:
首先通过参数法和蒙特卡洛模拟法来计算股票投资组合的整体VaR、成分VaR及边际VaR,以此来作为依据深入分析投资组合的风险分布;
其次运用均值-VaR投资组合优化模型来计算最小VaR投资组合,并通过对比原始权重和最小VaR权重下的损益走势图来说明VaR在投资组合风险结构调整过程中的有效性,对实际市场操作尤其是基金管理人对基金组合的风险管理具有重要的指导意义。
首先在这一章我们将对实证数据进行简单地统计分析。
为了使我们的实证过程能和实际投资活动结合得更紧密,我们将选取股票市场上的开放式基金实际持有的部分成分个股作为我们的证券投资组合(以下简称投资组合),构成比例依据基金公告公布的持仓比例为准。
本文选取的样本是开放式基金—000011华夏大盘精选,基金的管理人是华夏基金管理某,投资目标是追求基金资产的长期增值,属于稳健性的投资风格。
华夏大盘精选是我国证券市场上第一支开放式基金,具有广泛地代表性。
同时由于华夏大盘精选的成分股票有100多只,为了便于我们的分析,我们选择2015年3月31日基金半年报中公布的持仓明细中前40只股票构成一个投资组合,其权重将按照基金中的权重为准,经过调整后折合为投资组合的新权重。
样本数量的时间统计区间选为2013年7月1日-2015年6月30日的交易时间,节假日及周末不计算在内共有487个交易数据。
置信水平设c为95%,持有期设ΔT为1天,我们立足于在2015年6月30日,目标是为了计算投资组合7月1日的VaR值。
表1:
2015年6月30日华夏大盘投资组合头寸结构
代码
名称
持股数(万股)
市值(万元)
权重占比
板块名称
600256
广汇股份
3107.96
73907.27
13.64%
房地产业
600068
葛洲坝
4000.68
47968.17
8.85%
建筑业
600086
东方金钰
1620.68
31959.75
5.90%
其他制造业
600050
中国联通
6000.01
31500.03
5.81%
信息技术业
000822
某海化
2790
29574
5.46%
石油、化学、塑胶、
600019
宝钢股份
4500.36
27137.14
5.01%
金属、非金属
600316
洪都航空
800.72
25807.09
4.76%
机械、设备、仪表
600831
广电网络
2000.97
21370.35
3.94%
传播与文化产业
000659
某中富
1700.01
17952.08
3.31%
000888
峨眉山A
895
16289
3.01%
社会服务业
600107
美尔雅
1050.06
15666.93
2.89%
纺织、服装、皮毛
000090
深天健
1000
11550
2.13%
601328
交通银行
2000
11080
2.05%
金融、保险业
600657
信达地产
10829.03
2.00%
600962
国投中鲁
621.19
10877.05
2.01%
食品、饮料
600683
京投银泰
1200
10152
1.87%
000069
华侨城A
1200.01
9492.06
1.75%
002033
某旅游
459.99
9264.22
1.71%
000046
泛海建设
8780.03
1.62%
000002
万科A
8450
1.56%
600499
科达机电
472.58
7566.01
1.40%
000718
苏宁环球
900.91
7207.29
1.33%
600511
国药股份
450.01
6831.09
1.26%
批发和零售贸易
000978
600.92
6646.22
1.23%
600000
浦发银行
650
6396
1.18%
600597
光明乳业
800.07
6344.59
1.17%
600392
太工天成
250.08
6104.49
1.13%
600239
某城投
455
5851.33
1.08%
600997
开滦股份
350
5586
1.03%
采掘业
600811
东方集团
800.09
5504.6
1.02%
综合类
002238
天威视讯
300.03
5373.45
0.99%
000430
ST某
5342.96
600325
华发股份
450
5049
0.93%
600812
华北制药
412.66
4753.81
0.88%
医药、生物制品
600246
万通地产
946.67
4733.33
0.87%
600075
某天业
400
4707.95
000024
招商地产
250.01
4575.12
0.84%
000709
某钢铁
4520
0.83%
600135
乐凯胶片
288.25
4511.09
601166
兴业银行
336.49
4535.95
由统计数据可以看出投资组合基本涵盖了股票市场上的所有行业,主要侧重于房地产行业、建筑行业、传统制造业、服务行业、信息技术产业及金属行业,能够很好地反映市场整体风险状况。
这样涉及大多
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- VAR 模型 投资 组合 中的 应用