全等三角形培优讲义.doc
- 文档编号:1720057
- 上传时间:2022-10-23
- 格式:DOC
- 页数:10
- 大小:354.50KB
全等三角形培优讲义.doc
《全等三角形培优讲义.doc》由会员分享,可在线阅读,更多相关《全等三角形培优讲义.doc(10页珍藏版)》请在冰豆网上搜索。
全等三角形常见辅助线作法
精准诊查
【知识导图】
【导学】全等三角形
第一部分:
知识点回顾
常见辅助线的作法有以下几种:
1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”.
2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”.
3)遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.
4)过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”
5)截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目.
特殊方法:
在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答.
第二部分:
例题剖析
一、倍长中线(线段)造全等
例1、(“希望杯”试题)已知,如图△ABC中,AB=5,AC=3,则中线AD的取值范围是_________.
例2、如图,△ABC中,E、F分别在AB、AC上,DE⊥DF,D是中点,试比较BE+CF与EF的大小.
例3、如图,△ABC中,BD=DC=AC,E是DC的中点,求证:
AD平分∠BAE.
二、截长补短
1、如图,中,AB=2AC,AD平分,且AD=BD,求证:
CD⊥AC
2、如图,AC∥BD,EA,EB分别平分∠CAB,∠DBA,CD过点E,求证;AB=AC+BD
3、如图,已知在内,,,P,Q分别在BC,CA上,并且AP,BQ分别是,的角平分线。
求证:
BQ+AQ=AB+BP
4、如图,在四边形ABCD中,BC>BA,AD=CD,BD平分,
求证:
5、如图在△ABC中,AB>AC,∠1=∠2,P为AD上任意一点,求证;AB-AC>PB-PC
应用:
三、平移变换
例1AD为△ABC的角平分线,直线MN⊥AD于A.E为MN上一点,△ABC周长记为,△EBC周长记为.求证>.
例2如图,在△ABC的边上取两点D、E,且BD=CE,求证:
AB+AC>AD+AE.
四、借助角平分线造全等
1、如图,已知在△ABC中,∠B=60°,△ABC的角平分线AD,CE相交于点O,求证:
OE=OD
2、如图,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F.
(1)说明BE=CF的理由;
(2)如果AB=,AC=,求AE、BE的长.
五、旋转
例1正方形ABCD中,E为BC上的一点,F为CD上的一点,BE+DF=EF,求∠EAF的度数.
例2如图,是边长为3的等边三角形,是等腰三角形,且,以D为顶点做一个角,使其两边分别交AB于点M,交AC于点N,连接MN,则的周长为;
例3设点E、F分别在正方形ABCD的边BC、CD上滑动且保持∠EAF=450,
AP⊥EF于点P,
(1)求证:
AP=AB。
(2)若AB=5,求ΔECF的周长。
变式练习1、如图所示,正方形ABCD的BC边上有一点E,∠DAE的平分线交CD于F,试用旋转的
思想方法说明AE=DF+BE.
3.
(1)如图11-1,△ADE中,AE=AD且∠AED=∠ADE,∠EAD=90°,EC、DB分别平分∠AED、∠ADE,交AD、AE于点C、B,连接BC.请你判断AB、AC是否相等,并说明理由;
图11-1
图11-2
O
(2)△ADE的位置保持不变,将△ABC绕点A逆时针旋转至图11-2的位置,AD、BE相交于O,请你判断线段BE与CD的关系,并说明理由.
【课后作业】
1.如图,在△ABC中,∠ACB=90°,AC=BC,直线l经过顶点C,过A、B两点分别作l的垂线AE、BF,E、F为垂足.
(1)当直线l不与底边AB相交时,求证:
EF=AE+BF.
(2)如图,将直线l绕点C顺时针旋转,使l与底边AB交于点D,请你探究直线l在如下位置时,EF、AE、BF之间的关系.
①AD>BD;②AD=BD;③AD<BD.
2.如图3,Rt△ABC中,∠ACB=90°,AC=BC,AD⊥CD,BF⊥CD,AB交CD于E.
求证:
DF=CD-AD.
3.如图,已知AC=BC,∠ACB=90°,D为AB上任意一点,AE⊥CD延长线于E,BF⊥CD于F.求证:
EF=BF-AE.
4.如图,在△ABC中,AC⊥BC,AC=BC,D为AB上一点,AF⊥CD交CDA
C
F
D
E
BB
的延长线于F,BE⊥CD
于E.求证:
EF=BE—AF
5.如图,AD为△ABC的中线,∠ADB和∠ADC的平分线分别交AB、AC于点E、F.
求证:
BE+CF>EF.
第10页共10页
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全等 三角形 讲义