详解版届九年级中考总复习华师大版精练精析十七二次函数220页考点+分析+点评Word格式.docx
- 文档编号:17179585
- 上传时间:2022-11-28
- 格式:DOCX
- 页数:29
- 大小:241.55KB
详解版届九年级中考总复习华师大版精练精析十七二次函数220页考点+分析+点评Word格式.docx
《详解版届九年级中考总复习华师大版精练精析十七二次函数220页考点+分析+点评Word格式.docx》由会员分享,可在线阅读,更多相关《详解版届九年级中考总复习华师大版精练精析十七二次函数220页考点+分析+点评Word格式.docx(29页珍藏版)》请在冰豆网上搜索。
8.将抛物线y=(x﹣1)2+3向左平移1个单位,得到的抛物线与y轴的交点坐标是( )
A.(0,2)B.(0,3)C.(0,4)D.(0,7)
9.如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是( )
A.y=x2﹣1B.y=x2+1C.y=(x﹣1)2D.y=(x+1)2
二.填空题(共6小题)
10.某厂今年一月份新产品的研发资金为a元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年三月份新产品的研发资金y(元)关于x的函数关系式为y= _________ .
11.如图是一个横断面为抛物线形状的拱桥,当水面宽4米时,拱顶(拱桥洞的最高点)离水面2米,水面下降1米时,水面的宽度为 _________ 米.
12.如图的一座拱桥,当水面宽AB为12m时,桥洞顶部离水面4m,已知桥洞的拱形是抛物线,以水平方向为x轴,建立平面直角坐标系,若选取点A为坐标原点时的抛物线解析式是y=﹣(x﹣6)2+4,则选取点B为坐标原点时的抛物线解析式是 _________ .
13.某种商品每件进价为20元,调查表明:
在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,可卖出(30﹣x)件.若使利润最大,每件的售价应为 _________ 元.
14.如图,是二次函数y=ax2+bx+c图象的一部分,其对称轴为直线x=1,若其与x轴一交点为A(3,0),则由图象可知,不等式ax2+bx+c<0的解集是 _________ .
15.请写出一个以直线x=﹣2为对称轴,且在对称轴左侧部分是上升的抛物线的表达式,这条抛物线的表达式可以是 _________ .
三.解答题(共8小题)
16.如图,抛物线y=ax2+2x+c经过点A(0,3),B(﹣1,0),请解答下列问题:
(1)求抛物线的解析式;
(2)抛物线的顶点为点D,对称轴与x轴交于点E,连接BD,求BD的长.
注:
抛物线y=ax2+bx+c(a≠0)的顶点坐标是(﹣
,
).
17.如图,二次函数的图象与x轴交于A(﹣3,0)和B(1,0)两点,交y轴于点C(0,3),点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D.
(1)请直接写出D点的坐标.
(2)求二次函数的解析式.
(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.
18.已知二次函数y=x2﹣4x+3.
(1)用配方法求其图象的顶点C的坐标,并描述该函数的函数值随自变量的增减而变化的情况;
(2)求函数图象与x轴的交点A,B的坐标,及△ABC的面积.
19.如图,抛物线y=﹣x2+2x+c与x轴交于A,B两点,它的对称轴与x轴交于点N,过顶点M作ME⊥y轴于点E,连结BE交MN于点F,已知点A的坐标为(﹣1,0).
(1)求该抛物线的解析式及顶点M的坐标.
(2)求△EMF与△BNF的面积之比.
20.实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y(毫克/百毫升)与时间x(时)的关系可近似地用二次函数y=﹣200x2+400x刻画;
1.5小时后(包括1.5小时)y与x可近似地用反比例函数y=(k>0)刻画(如图所示).
(1)根据上述数学模型计算:
①喝酒后几时血液中的酒精含量达到最大值?
最大值为多少?
②当x=5时,y=45,求k的值.
(2)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:
00在家喝完半斤低度白酒,第二天早上7:
00能否驾车去上班?
请说明理由.
21.在2014年巴西世界杯足球赛前夕,某体育用品店购进一批单价为40元的球服,如果按单价60元销售,那么一个月内可售出240套.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套.设销售单价为x(x≥60)元,销售量为y套.
(1)求出y与x的函数关系式.
(2)当销售单价为多少元时,月销售额为14000元;
(3)当销售单价为多少元时,才能在一个月内获得最大利润?
最大利润是多少?
[参考公式:
抛物线y=ax2+bx+c(a≠0)的顶点坐标是
].
22.某研究所将某种材料加热到1000℃时停止加热,并立即将材料分为A、B两组,采用不同工艺做降温对比实验,设降温开始后经过xmin时,A、B两组材料的温度分别为yA℃、yB℃,yA、yB与x的函数关系式分别为yA=kx+b,yB=(x﹣60)2+m(部分图象如图所示),当x=40时,两组材料的温度相同.
(1)分别求yA、yB关于x的函数关系式;
(2)当A组材料的温度降至120℃时,B组材料的温度是多少?
(3)在0<x<40的什么时刻,两组材料温差最大?
23.某经销商销售一种产品,这种产品的成本价为10元/千克,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18元/千克,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)之间的函数关系如图所示:
(1)求y与x之间的函数关系式,并写出自变量x的取值范围;
(2)求每天的销售利润W(元)与销售价x(元/千克)之间的函数关系式.当销售价为多少时,每天的销售利润最大?
(3)该经销商想要每天获得150元的销售利润,销售价应定为多少?
参考答案与试题解析
A.4个B.3个C2个D.1个
考点:
二次函数图象与系数的关系.
专题:
数形结合.
分析:
利用二次函数图象的相关知识与函数系数的联系,需要根据图形,逐一判断.
解答:
解:
∵抛物线和x轴有两个交点,
∴b2﹣4ac>0,
∴4ac﹣b2<0,∴①正确;
∵对称轴是直线x=﹣1,和x轴的一个交点在点(0,0)和点(1,0)之间,
∴抛物线和x轴的另一个交点在(﹣3,0)和(﹣2,0)之间,
∴把(﹣2,0)代入抛物线得:
y=4a﹣2b+c>0,
∴4a+c>2b,∴②错误;
∵把(1,0)代入抛物线得:
y=a+b+c<0,
∴2a+2b+2c<0,
∵b=2a,
∴3b+2c<0,∴③正确;
∵抛物线的对称轴是直线x=﹣1,
∴y=a﹣b+c的值最大,
即把x=m(m≠﹣1)代入得:
y=am2+bm+c<a﹣b+c,
∴am2+bm+b<a,
即m(am+b)+b<a,∴④正确;
即正确的有3个,
故选:
B.
点评:
此题主要考查了二次函数图象与系数的关系,在解题时要注意二次函数的系数与其图象的形状,对称轴,特殊点的关系,也要掌握在图象上表示一元二次方程ax2+bx+c=0的解的方法,同时注意特殊点的运用.
2.如图是二次函数y=ax2+bx+c的图象的一部分,对称轴是直线x=1.
A.①②B.①④C.①③④D.②③④
二次函数图象与系数的关系;
二次函数图象上点的坐标特征;
二次函数与不等式(组).
根据抛物线与x轴有两个交点可得b2﹣4ac>0,进而判断①正确;
根据题中条件不能得出x=﹣2时y的正负,因而不能得出②正确;
如果设ax2+bx+c=0的两根为α、β(α<β),那么根据图象可知不等式ax2+bx+c>0的解集是x<α或x>β,由此判断③错误;
先根据抛物线的对称性可知x=﹣2与x=4时的函数值相等,再根据二次函数的增减性即可判断④正确.
①∵抛物线与x轴有两个交点,
∴b2>4ac,故①正确;
②x=﹣2时,y=4a﹣2b+c,而题中条件不能判断此时y的正负,即4a﹣2b+c可能大于0,可能等于0,也可能小于0,故②错误;
③如果设ax2+bx+c=0的两根为α、β(α<β),那么根据图象可知不等式ax2+bx+c>0的解集是x<α或x>β,故③错误;
④∵二次函数y=ax2+bx+c的对称轴是直线x=1,
∴x=﹣2与x=4时的函数值相等,
∵4<5,
∴当抛物线开口向上时,在对称轴的右边,y随x的增大而增大,
∴y1<y2,故④正确.
主要考查图象二次函数图象与系数的关系,二次函数图象上点的坐标特征,二次函数的性质,以及二次函数与不等式的关系,根的判别式的熟练运用.
3二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是( )
A.c>﹣1Bb>0C.2a+b≠0D.9a+c>3b
压轴题;
数形结合.
由抛物线与y轴的交点在点(0,﹣1)的下方得到c<﹣1;
由抛物线开口方向得a>0,再由抛物线的对称轴在y轴的右侧得a、b异号,即b<0;
根据抛物线的对称性得到抛物线对称轴为直线x=﹣
,若x=1,则2a+b=0,故可能成立;
由于当x=﹣3时,y>0,所以9a﹣3b+c>0,即9a+c>3b.
∵抛物线与y轴的交点在点(0,﹣1)的下方.
∴c<﹣1;
故A错误;
∵抛物线开口向上,
∴a>0,
∵抛物线的对称轴在y轴的右侧,
∴x=﹣
>0,
∴b<0;
故B错误;
∵抛物线对称轴为直线x=﹣
∴若x=1,即2a+b=0;
故C错误;
∵当x=﹣3时,y>0,
∴9a﹣3b+c>0,
即9a+c>3b.
D.
本题考查了二次函数的图象与系数的关系:
二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;
对称轴为直线x=﹣
;
抛物线与y轴的交点坐标为(0,c);
当b2﹣4ac>0,抛物线与x轴有两个交点;
当b2﹣4ac=0,抛物线与x轴有一个交点;
当b2﹣4ac<0,抛物线与x轴没有交点.
A.①②④B③④C.①③④D.①②
①根据抛物线开口方向、对称轴位置、抛物线与y轴交点位置求得a、b、c的符号;
②根据对称轴求出b=﹣a;
③把x=2代入函数关系式,结合图象判断函数值与0的大小关系;
④求出点(﹣2,y1)关于直线x=的对称点的坐标,根据对称轴即可判断y1和y2的大小.
①∵二次函数的图象开口向下,
∴a<0,
∵二次函数的图象交y轴的正半轴于一点,
∴c>0,
∵对称轴是直线x=,
∴﹣
=,
∴b=﹣a>0,
∴abc<0.
故①正确;
②∵由①中知b=﹣a,
∴a+b=0,
故②正确;
③把x=2代入y=ax2+bx+c得:
y=4a+2b+c,
∵抛物线经过点(2,0),
∴当x=2时,y=0,即4a+2b+c=0.
故③错误;
④∵(﹣2,y1)关于直线x=的对称点的坐标是(3,y1),
又∵当x>时,y随x的增大而减小,<3,
∴y1<y2.
故④正确;
综上所述,正确的结论是①②④.
A.
本题考查了二次函数的图象和系数的关系的应用,注意:
当a>0时,二次函数的图象开口向上,当a<0时,二次函数的图象开口向下.
5如图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是x=1,下列结论正确的是( )
A.b2>4acB.ac>0C.a﹣b+c>0D.4a+2b+c<0
根据抛物线与x轴有两个交点有b2﹣4ac>0可对A进行判断;
由抛物线开口向下得a<0,由抛物线与y轴的交点在x轴上方得c>0,则可对B进行判断;
根据抛物线的对称性得到抛物线与x轴的另一个交点为(﹣1,0),所以a﹣b+c=0,则可对C选项进行判断;
由于x=2时,函数值大于0,则有4a+2b+c>0,于是可对D选项进行判断.
∵抛物线与x轴有两个交点,
∴b2﹣4ac>0,即b2>4ac,所以A选项正确;
∵抛物线开口向下,
∵抛物线与y轴的交点在x轴上方,
∴ac<0,所以B选项错误;
∵抛物线过点A(3,0),二次函数图象的对称轴是x=1,
∴抛物线与x轴的另一个交点为(﹣1,0),
∴a﹣b+c=0,所以C选项错误;
∵当x=2时,y>0,
∴4a+2b+c>0,所以D选项错误.
A.﹣3B﹣1C.2D.5
二次函数图象上点的坐标特征.
整体思想.
把点(1,1)代入函数解析式求出a+b,然后代入代数式进行计算即可得解.
∵二次函数y=ax2+bx﹣1(a≠0)的图象经过点(1,1),
∴a+b﹣1=1,
∴a+b=2,
∴1﹣a﹣b=1﹣(a+b)=1﹣2=﹣1.
本题考查了二次函数图象上点的坐标特征,整体思想的利用是解题的关键.
A.向左平移2个单位B.向右平移2个单位C向上平移2个单位D.向下平移2个单位
二次函数图象与几何变换.
根据图象左移加,可得答案.
将抛物线y=x2平移得到抛物线y=(x+2)2,则这个平移过程正确的是向左平移了2个单位,
本题考查了二次函数图象与几何变换,函数图象平移规律是:
左加右减,上加下减.
A.(0,2)B.(0,3)C.(0,4)D.(0,7)
几何变换.
先根据顶点式确定抛物线y=(x﹣1)2+3的顶点坐标为(1,3),再利用点的平移得到平移后抛物线的顶点坐标为(0,3),于是得到移后抛物线解析式为y=x2+3,然后求平移后的抛物线与y轴的交点坐标.
抛物线y=(x﹣1)2+3的顶点坐标为(1,3),
把点(1,3)向左平移1个单位得到点的坐标为(0,3),
所以平移后抛物线解析式为y=x2+3,
所以得到的抛物线与y轴的交点坐标为(0,3).
本题考查了二次函数图象与几何变换:
由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:
一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;
二是只考虑平移后的顶点坐标,即可求出解析式.
A.y=x2﹣1B.y=x2+1C.y=(x﹣1)2D.y=(x+1)2
先得到抛物线y=x2的顶点坐标为(0,0),再得到点(0,0)向右平移1个单位得到点的坐标为(1,0),然后根据顶点式写出平移后的抛物线解析式.
抛物线y=x2的顶点坐标为(0,0),把点(0,0)向右平移1个单位得到点的坐标为(1,0),
所以所得的抛物线的表达式为y=(x﹣1)2.
C.
10.某厂今年一月份新产品的研发资金为a元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年三月份新产品的研发资金y(元)关于x的函数关系式为y= a(1+x)2 .
根据实际问题列二次函数关系式.
计算题.
由一月份新产品的研发资金为a元,根据题意可以得到2月份研发资金为a×
(1+x),而三月份在2月份的基础上又增长了x,那么三月份的研发资金也可以用x表示出来,由此即可确定函数关系式.
∵一月份新产品的研发资金为a元,
2月份起,每月新产品的研发资金与上月相比增长率都是x,
∴2月份研发资金为a×
(1+x),
∴三月份的研发资金为y=a×
(1+x)×
(1+x)=a(1+x)2.
故填空答案:
a(1+x)2.
此题主要考查了根据实际问题二次函数列解析式,此题是平均增长率的问题,可以用公式a(1±
x)2=b来解题.
11.如图是一个横断面为抛物线形状的拱桥,当水面宽4米时,拱顶(拱桥洞的最高点)离水面2米,水面下降1米时,水面的宽度为
米.
二次函数的应用.
函数思想.
根据已知得出直角坐标系,进而求出二次函数解析式,再通过把y=﹣1代入抛物线解析式得出水面宽度,即可得出答案.
建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,
抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),
通过以上条件可设顶点式y=ax2+2,其中a可通过代入A点坐标(﹣2,0),
到抛物线解析式得出:
a=﹣0.5,所以抛物线解析式为y=﹣0.5x2+2,
当水面下降1米,通过抛物线在图上的观察可转化为:
当y=﹣1时,对应的抛物线上两点之间的距离,也就是直线y=﹣1与抛物线相交的两点之间的距离,
可以通过把y=﹣1代入抛物线解析式得出:
﹣1=﹣0.5x2+2,
解得:
x=
所以水面宽度增加到
米,
故答案为:
米.
此题主要考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题的关键.
12.如图的一座拱桥,当水面宽AB为12m时,桥洞顶部离水面4m,已知桥洞的拱形是抛物线,以水平方向为x轴,建立平面直角坐标系,若选取点A为坐标原点时的抛物线解析式是y=﹣(x﹣6)2+4,则选取点B为坐标原点时的抛物线解析式是 y=﹣(x+6)2+4 .
根据题意得出A点坐标,进而利用顶点式求出函数解析式即可.
由题意可得出:
y=a(x+6)2+4,
将(﹣12,0)代入得出,0=a(﹣12+6)2+4,
a=﹣,
∴选取点B为坐标原点时的抛物线解析式是:
y=﹣(x+6)2+4.
此题主要考查了二次函数的应用,利用顶点式求出函数解析式是解题关键.
在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,可卖出(30﹣x)件.若使利润最大,每件的售价应为 25 元.
销售问题.
本题是营销问题,基本等量关系:
利润=每件利润×
销售量,每件利润=每件售价﹣每件进价.再根据所列二次函数求最大值.
设最大利润为w元,
则w=(x﹣20)(30﹣x)=﹣(x﹣25)2+25,
∵20≤x≤30,
∴当x=25时,二次函数有最大值25,
故答案是:
25.
本题考查了把实际问题转化为二次函数,再利用二次函数的性质进行实际应用.此题为数学建模题,借助二次函数解决实际问题.
14.如图,是二次函数y=ax2+bx+c图象的一部分,其对称轴为直线x=1,若其与x轴一交点为A(3,0),则由图象可知,不等式ax2+bx+c<0的解集是 ﹣1<x<3 .
二次函数与不等式(组).
利用二次函数的对称性,可得出图象与x轴的另一个交点坐标,结合图象可得出ax2+bx+c<0的解集.
由图象得:
对称轴是x=1,其中一个点的坐标为(3,0)
∴图象与x轴的另一个交点坐标为(﹣1,0)
利用图象可知:
ax2+bx+c<0的解集即是y<0的解集,
∴﹣1<x<3
故填:
﹣1<x<3
此题主要考查了二次函数利用图象解一元二次方程根的情况,很好地利用数形结合,题目非常典型.
15.请写出一个以直线x=﹣2为对称轴,且在对称轴左侧部分是上升的抛物线的表达式,这条抛物线的表达式可以是 y=﹣(x+2)2等 .
二次函数的性质.
开放型.
在对称
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 详解 九年级 中考 复习 师大 精练 十七 二次 函数 220 考点 分析 点评