6《整式及整式的加减》要点梳理及经典例题.doc
- 文档编号:1716789
- 上传时间:2022-10-23
- 格式:DOC
- 页数:9
- 大小:260.50KB
6《整式及整式的加减》要点梳理及经典例题.doc
《6《整式及整式的加减》要点梳理及经典例题.doc》由会员分享,可在线阅读,更多相关《6《整式及整式的加减》要点梳理及经典例题.doc(9页珍藏版)》请在冰豆网上搜索。
《整式及整式的加减》要点梳理及经典例题6
上课时间
2014年月日(第周星期)
第课时
教学内容
第二章整式的加减复习
教
学
目
标
知识与技能
进一步掌握整式的有关概念,并能灵活进行整式的加减
过程与方法
使学生理解进行整式的加减的必要性,并能灵活运用整式的加减的步骤进行运算。
情感态度
与价值观
培养学生的运算能力
教学重点
整式的加减
教学难点
总结出整式的加减的一般步骤
一、知识点回顾
1、单项式的概念
单项式:
由数与字母的乘积组成的代数式称为单项式。
补充:
单独一个数或一个字母也是单项式,如a,5……:
注意:
单项式中数与字母或字母与字母之间是乘积关系,例如:
可以看成,所以是单项式;而表示2与的商,所以不是单项式,凡是分母中含有字母的就一定不是单项式.
单项式系数和次数:
单项式是一般由数字因数和字母因数两部分组成的。
系数:
单项式中的字母因数
次数:
单项式中所有字母的指数和
注意1:
①单项式的系数包括其前面的符号;②当一个单项式的系数是1或时,“1”通常省略不写,但符号不能省略.如:
等;③是数字,不是字母.
注意2:
①计算单项式的次数时,不要漏掉字母的指数为1的情况.如的次数为,而不是5;②切勿加上系数上的指数,如的次数是3,而不是8;的次数是5,而不是6.
2、单项式的规范书写
数与字母相乘,数写在字母的前面
数与字母相乘、字母与字母相乘省略乘号。
除号要写成分数线
3、多项式的概念
几个单项式的和叫做多项式。
在多项式中每个单项式叫做多项式的项,其中不含字母的项叫常数项。
多项式里次数最高项的次数,就是这个多项式的次数。
例如,多项式3x-2最高的项就是一次项3x,这个多项式的次数是1,它是一次二项式
注意:
要防止把多项式的次数与单项式的次数相混淆,而误认为多项式的次数是各项次数之和.例如:
多项式中,的次数是4,的次数是5,的次数是3,故此多项式的次数是5,而不是.
4.降幂排列与升幂排列
(1)降幂排列:
把一个多项式按某一个字母的指数从大到小的顺序排列起来叫做把这个多项式按这个字母的降幂排列.
(2)把一个多项式按某一个字母的指数从小到大的顺序排列起来叫做把这个多项式按这个字母的升幂排列.
注意:
①降(升)幂排列的根据是:
加法的交换律和结合律;②把一个多项式按降(升)幂重新排列,移动多项式的项时,需连同项的符号一起移动;③在进行多项式的排列时,要先确定按哪个字母的指数来排列.例如:
多项式按的升幂排列为:
;按的降幂排列为:
.
5、整式的概念:
单项式与多项式统称整式
二、整式的加减
1、同类项:
所含字母相同,相同字母的指数也分别相同的项叫做同类项,所有的常数项都是同类项。
注意:
同类项与其系数及字母的排列顺序无关.例如:
与是同类项;而与却不是同类项,因为相同的字母的指数不同.
合并同类项:
把多项式中同类项合并在一起,叫做合并同类项。
注意:
①合并同类项时,只能把同类项合并成一项,不是同类项的不能合并,如显然不正确;②不能合并的项,在每步运算中不要漏掉.
合并同类项法则:
合并同类项时,把同类项的系数相加,字母和字母的指数保持不变。
注意:
①合并同类项,只是系数上的变化,字母与字母的指数不变,不能将字母的指数相加;②合并同类项的依据是加法交换律、结合律及乘法分配律;③两个同类项合并后的结果与原来的两个单项式仍是同类项或者是0.
2、
(1)去括号的法则
如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;
如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.
注意:
①去括号的依据是乘法分配律,当括号前面有数字因数时,应先利用分配律计算,切勿漏乘;②明确法则中的“都”字,变符号时,各项都变;若不变符号,各项都不变.例如:
;③当出现多层括号时,一般由里向外逐层去括号,如遇特殊情况,为了简便运算也可由外向内逐层去括号.
(2)填括号法则:
所添括号前面是“+”号,添到括号内的各项都不变号;所添括号前面是“-”号,添到括号内的各项都改变符号.
注意:
①添括号是添上括号和括号前面的“+”或“-”,它不是原来多项式的某一项的符号“移”出来的;②添括号和去括号的过程正好相反,添括号是否正确,可用去括号来检验.例如:
3、整式加减的运算法则(整式的加减实质上是去括号和合并同类项)
(1)如果有括号,那么先去括号。
(2)如果有同类项,再合并同类项。
注意:
整式运算的结果仍是整式.
三、重要考点例析
考点一、考查整式的有关概念
1.指出下列各式中哪些是整式,哪些不是。
(1)x+1;
(2)a=2;(3)π;(4)S=πR2;(5);(6)
总结升华:
判断是不是整式,关键是了解整式的概念,注意整式与等式、不等式的区别,等式含有等号,不等式含有不等号,而整式不能含有这些符号。
举一反三:
[变式]把下列式子按单项式、多项式、整式进行归类。
x2y,a-b,x+y2-5,,-29,2ax+9b-5,600xz,axy,xyz-1,。
分析:
本题的实质就是识别单项式、多项式和整式。
单项式中数和字母、字母和字母之间必须是相乘的关系,多项式必须是几个单项式的和的形式。
答案:
单项式有:
x2y,-,-29,600xz,axy
多项式有:
a-b,x+y2-5,2ax+9b-5,xyz-1
整式有:
x2y,a-b,x+y2-5,-,-29,2ax+9b-5,600xz,axy,xyz-1。
2、代数式中共有项,的系数是,的系数是,的系数是.
3、在代数式中,和是同类项,和是同类项,和也是同类项,合并后是.
4、若与是同类项,则,.
考点二、去括号、化简绝对值
1、若,则.
2、若x A.2x-2zB.0C.2x-2yD.2z-2x 3、去括号得() A.B.C.D. 类型三: 同类项 3.若与是同类项,那么a,b的值分别是() (A)a=2,b=-1。 (B)a=2,b=1。 (C)a=-2,b=-1。 (D)a=-2,b=1。 思路点拨: 解决此类问题的关键是明确同类项定义,即字母相同且相同字母的指数相同,要注意同类项与系数的大小没有关系。 解析: 由同类项的定义可得: a-1=-b,且2a+b=3, 解得a=2,b=-1, 故选A。 举一反三: [变式]在下面的语句中,正确的有( ) ①-a2b3与a3b2是同类项; ②x2yz与-zx2y是同类项; ③-1与是同类项; ④字母相同的项是同类项。 A、1个 B、2个 C、3个 D、4个 解析: ①中-a2b3与a3b2所含的字母都是a,b,但a的次数分别是2,3,b的次数分别是3,2,所以它们不是同类项;②中所含字母相同,并且相同字母的指数也相同,所以x2yz与-zx2y是同类项;不含字母的项(常数项)都是同类项,③正确,根据①可知④不正确。 故选B。 类型四: 整式的加减 4.化简m-n-(m+n)的结果是() (A)0。 (B)2m。 (C)-2n。 (D)2m-2n。 思路点拨: 按去括号的法则进行计算,括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项都改变符号。 解析: 原式=m-n-m-n=-2n,故选(C)。 举一反三: [变式]计算: 2xy+3xy=_________。 分析: 按合并同类项的法则进行计算,把系数相加所得的结果作为系数,字母和字母的指数不变。 注意不要出现5x2y2的错误。 答案: 5xy。 5.(化简代入求值法)已知x=-,y=-,求代数式(5x2y-2xy2-3xy)-(2xy+5x2y-2xy2) 思路点拨: 此题直接把x、y的值代入比较麻烦,应先化简再代入求值。 解析: 原式=5x2y-2xy2-3xy-2xy-5x2y+2xy2=-5xy 当x=-,y=-时,原式=-5×。 总结升华: 求代数式的值的第一步是“代入”,即用数值替代整式里的字母;第二步是“求值”,即按照整式中指明的运算,计算出结果。 应注意的问题是: 当整式中有同类项时,应先合并同类项化简原式,再代入求值。 举一反三: [变式1]当x=0,x=,x=-2时,分别求代数式的2x2-x+1的值。 解: 当x=0时,2x2-x+1=2×02-0+1=1; 当x=时,2x2-x+1=2×; 当x=-2时,2x2-x+1=2×(-2)2-(-2)+1=2×4+2+1=11。 总结升华: 一个整式的值,是由整式中的字母所取的值确定的,字母取值不同,一般整式的值也不同;当整式中没有同类项时,直接代入计算,原式中的系数、指数及运算符号都不改变。 但应注意,当字母的取值是分数或负数时,代入时,应将分数或负数添上括号。 [变式2]先化简,再求值。 3(2x2y-3xy2)-(xy2-3x2y),其中x=,y=-1。 解: 3(2x2y-3xy2)-(xy2-3x2y)=(6x2y-9xy2)-xy2+3x2y =6x2y-9xy2-xy2+3x2y=9x2y-10xy2。 ∴当x=,y=-1时,原式=9××(-1)-10××(-1)2=-。 总结升华: 解题的基本规律是先把原式化简为9x2y-10xy2,再代入求值,化简降低了运算难度,使计算更加简便,体现了化繁为简,化难为易的转化思想。 [变式3]求下列各式的值。 (1)(2x2-x-1)-,其中x= (2)2[mn+(-3m)]-3(2n-mn),其中m+n=2,mn=-3。 解析: (1)(2x2-x-1)- =2x2-x-1-x2+x++3x2-3=4x2-4 当x=时,原式=4×-4=9-4=5。 (2)2[mn+(-3m)]-3(2n-mn) =2mn-6m-6n+3mn =5mn-6(m+n) 当m+n=2,mn=-3时 原式=5×(-3)-6×2=-27。 、计算 (1); (2); (3);(4)2 化简求值 (1)其中. (2)其中. 类型五: 整体思想的应用 6.已知x2+x+3的值为7,求2x2+2x-3的值。 思路点拨: 该题解答的技巧在于先求x2+x的值,再整体代入求解,体现了数学中的整体思想。 解析: 由题意得x2+x+3=7,所以x2+x=4,所以2(x2+x)=8,即2x2+2x=8,所以2x2+2x-3=8-3=5。 总结升华: 整体思想就是在考虑问题时,不着眼于它的局部特征,而是将具有共同特征的某一项或某一类看成一个整体的数学思想方法。 运用这种方法应从宏观上进行分析,抓住问题的整体结构和本质特征,全面关注条件和结论,加以研究、解决,使问题简单化。 在中考中该思想方法比较常见,尤其在化简题中经常用到。 举一反三: [变式1]已知x2+x-1=0,求代数式x3+2x2-
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 整式及整式的加减 整式 加减 要点 梳理 经典 例题