小学数学知识点汇总Word文档下载推荐.docx
- 文档编号:17160230
- 上传时间:2022-11-28
- 格式:DOCX
- 页数:8
- 大小:23.21KB
小学数学知识点汇总Word文档下载推荐.docx
《小学数学知识点汇总Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《小学数学知识点汇总Word文档下载推荐.docx(8页珍藏版)》请在冰豆网上搜索。
7.质因数:
如果一个自然数的因数是质数,这个因数就叫做这个自然数的质因数。
8.分解质因数:
把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
9.公约数、公倍数:
几个数公有的约数,叫做这几个数的公约数;
其中最大的一个,叫做这几个数的最大公约数。
几个数公有的倍数,叫做这几个数的公倍数;
其中最小的一个,叫做这几个数的最小公倍数。
10.一般关系的两个数的最大公约数、最小公倍数用短除法来求;
互质关系的两个数最大公约数是1,最小公倍数是两数之积;
倍数关系的两个数的最大公约数是小数,最小公倍数是大数。
11.互质数:
公约数只有1的两个数叫做互质数。
12.两数之积等于最小公倍数和最大公约数的积。
三.四则运算
1.一个加数=和-另一个加数被减数=差+减数减数=被减数-差
一个因数=积÷
另一个因数被除数=商×
除数除数=被除数÷
商
2.在四则运算中,加、减法叫做第一级运算,乘、除法叫做第二级运算。
3.运算定律:
(1)加法交换律:
a+b=b+a乘法交换律:
a×
b=b×
a
两个数相加,交换加数的位置,它们的和不变。
两个数相加,交换因数的位置,它们的积不变。
(2)加法结合律:
(a+b)+c=a+(b+c)乘法结合律:
(a×
b)×
c=a×
(b×
c)
三个数相加,先把前两个数相加,再同第三个数相加;
或者先把后两个数相加,再同第一个数相加,它们的和不变。
三个数相乘,先把前两个数相乘,再同第三个数相乘;
或者先把后两个数相乘,再同第一个数相乘,它们的积不变。
(3)乘法分配律:
(a+b)×
c+b×
c
两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
(4)减法的性质:
a-b-c=a-(b+c)除法的性质:
a÷
b÷
c=a÷
从一个数里连续减去两个数,等于从这个数里减去两个减数的和。
一个数连续除以两个数,等于这个数除以两个除数的积。
四.关系式
1.速度×
时间=路程路程÷
时间=速度路程÷
速度=时间
工作效率×
工作时间=工作总量工作总量÷
工作效率=工作时间工作总量÷
工作时间=工作效率
单价×
数量=总价总价÷
数量=单价总价÷
单价=数量
五.方程
1.方程:
含有未知数的等式叫做方程。
2.方程的解:
使方程左右两边相等的未知数的值,叫做方程的解。
3.解方程:
求方程解的过程叫做解方程。
六.分数和百分数
1.分数的意义:
把单位"
平均分成若干份,表示这样的一份或几份的数叫做分数。
2.分数单位:
平均分成若干份,表示其中一份的数,叫做分数单位。
3.分数和除法的联系:
分数的分子就是除法中的被除数,分母就是除法中的除数。
分数和小数的联系:
小数实际上就是分母是10、100、1000......的分数。
分数和比的联系:
分数的分子就是比的前项,分数的分母就是比的后项。
4.分数的分类:
分数可以分为真分数和假分数。
5.真分数:
分子小于分母的分数叫做真分数。
真分数小于1。
假分数:
分子大于或等于分母的分数叫做假分数。
假分数大于或者等于1。
6.最简分数:
分子与分母互质的分数叫做最简分数。
7.分数的基本性质:
分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不变。
8.这样的分数可以化成有限小数:
前提是这个分数要是最简分数,如果分母只含有2、5这2个质因数,这样的分数就能化成有限小数。
9.百分数:
表示一个数是另一个数的百分之几的数叫做百分数。
百分数也叫做百分率或者百分比。
百分数通常用"
%"
来表示。
七.量的计量
1.长度单位有:
千米、米、分米、厘米、毫米,写出它们之间的进率
面积单位有:
平方千米、公顷、平方米、平方分米、平方厘米,写出它们之间的进率。
体积(容积)单位有:
立方米、立方分米(升)、立方厘米(毫升),写出它们之间的进率。
质量单位有:
吨、千克、克,写出它们之间的进率。
时间单位有:
世纪、年、月、日、时、分、秒,写出它们之间的进率。
2.一年中的大月有:
1、3、5、7、8、10、12月,共7个,每月31天。
小月有:
4、6、9、11月,共4个,每月30天。
二月平年是28天,闰年是29天。
左拳记月法
3.一年有4个季度,每个季度3个月。
4.平年闰年:
公历年份是4的倍数的一般是闰年,公历年份是整百数的,必须是400的倍数才是闰年。
5.名数:
把计量得到的数和单位名称合起来叫做名数。
单名数:
只带有一个单位名称的叫做单名数。
复名数:
带有两个或两个以上单位名称的叫做复名数。
6.名数的改写:
高级单位的名数化成低级单位的名数乘进率,低级单位的名数化成高级单位的名数除以进率。
八.几何初步知识
1.线段、射线、直线的联系与区别:
联系是三者都是直的,区别是线段有两个端点,可以量出长度;
射线只有一个端点,可以无限延长;
直线没有端点,两端都可以无限延长。
射线和直线是无限长的。
2.角:
从一点引出两条射线所组成的图形叫做角。
3.角的大小:
角的大小看两条边叉开的大小,叉开的越大,角越大。
1.计量角的大小的单位:
度,用符号"
°
"
表示。
2.小于90°
的角叫做锐角;
大于90°
而小于180°
的角叫做钝角。
角的两边在一条直线上的角叫做平角。
平角180°
。
3.垂线:
两条直线相交成直角时,这两条直线互相垂直,其中一条直线是另一条直线的垂线,这两条直线的交点叫做垂足。
(画图说明)
4.平行线:
在同一平面内不相交的两条直线叫做平行线。
也可以说这两条直线互相平行。
(画图说明)平行线之间垂直线段的长度都相等。
5.三角形:
有三条线段围成的图形叫做三角形。
6.三角形的分类:
(1)按角分:
锐角三角形、钝角三角形、直角三角形。
(2)按边分:
一般三角形、等腰三角形、等边三角形。
10.三角形三个内角和是180°
11.四边形:
由四条线段围成的图形。
12.圆是一种曲线图形。
圆上任意一点到圆心的距离都相等,这个距离就是圆的半径的长。
13.圆的半径、直径都有无数条。
在同一个圆里,直径是半径的2倍,半径是直径的二分之一。
14.轴对称图形:
如果一个图形沿着一条直线对折,直线两恻的图形能够完全重合,这个图形就是轴对称图形。
折痕所在的这条直线叫做对称轴。
15.学过的图形中的轴对称图形有:
圆、等腰三角形、等边三角形、长方形、正方形、等腰梯形
16.周长:
围成一个图形的所有边长的总和就是这个图形的周长。
面积:
物体的表面或围成的平面图形的大小,叫做它们的面积。
17。
表面积:
立体图形所有面的面积的和,叫做这个立体图形的表面积。
体积:
物体所占空间的大小叫做物体的体积。
18.长方体、正方体都有12条棱,6个面,8个顶点。
正方体是特殊的长方体,等边三角形是特殊的等腰三角形。
19.圆柱的三个特点:
(1)上下一样粗细
(2)侧面是曲面(3)两个底面是相同的圆
20.圆柱的高:
圆柱两个底面之间的距离叫做圆柱的高。
圆柱的高有无数条,这些高都平行且相等。
21.把圆柱的侧面展开,得到一个长方形,这个长方形的长等于圆柱的底面的周长,宽等于圆柱的高。
22.圆周率π是一个无限不循环小数。
π=3.141592653......
23.把圆等份成若干份,拼成的图形接近于长方形。
这个长方形的长相当于圆周长的一半,宽就是圆的半径。
24.圆锥的高:
从圆锥的顶点到底面圆心的距离是圆锥的高。
25.等底等高的圆锥的体积是圆柱的三分之一,等底等高的圆柱的体积是圆锥的三倍。
体积和底面积相等的圆柱和圆锥,圆柱的高是圆锥的三分之一,圆锥的高是圆柱的3倍。
小学数学题型归纳整理
一、植树问题
1非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷
株距-1
全长=株距×
(株数-1)
株距=全长÷
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷
株距
株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷
(株数+1)
2封闭线路上的植树问题的数量关系如下
二、置换问题:
题中有二个未知数,常常把其中一个未知数暂时当作另一个未知数,然后根据已知条件进行假设性的运算。
其结果往往与条件不符合,再加以适当的调整,从而求出结果。
例:
一个集邮爱好者买了10分和20分的邮票共100张,总值18元8角。
这个集邮爱好者买这两种邮票各多少张?
分析:
先假定买来的100张邮票全部是20分一张的,那么总值应是20×
100=2000(分),比原来的总值多2000-1880=120(分)。
而这个多的120分,是把10分一张的看作是20分一张的,每张多算20-10=10(分),如此可以求出10分一张的有多少张。
列式:
(2000-1880)÷
(20-10)=120÷
10=12(张)→10分一张的张数
100-12=88(张)→20分一张的张数或是先求出20分一张的张数,再求出10分一张的张数,方法同上,注意总值比原来的总值少。
三、盈亏问题(盈不足问题):
题目中往往有两种分配方案,每种分配方案的结果会出现多(盈)或少(亏)的情况,通常把这类问题,叫做盈亏问题(也叫做盈不足问题)。
解答这类问题时,应该先将两种分配方案进行比较,求出由于每份数的变化所引起的余数的变化,从中求出参加分配的总份数,然后根据题意,求出被分配物品的数量。
其计算方法是:
当一次有余数,另一次不足时:
每份数=(余数+不足数)÷
两次每份数的差
当两次都有余数时:
总份数=(较大余数-较小数)÷
当两次都不足时:
总份数=(较大不足数-较小不足数)÷
例1、解放军某部的一个班,参加植树造林活动。
如果每人栽5棵树苗,还剩下14棵树苗;
如果每人栽7棵,就差4棵树苗。
求这个班有多少人?
一共有多少棵树苗
由条件可知,这道题属第一种情况。
列式:
(14+4)÷
(7-5)=18÷
2=9(人)
5×
9+14=45+14=59(棵)或:
7×
9-4=63-4=59(棵)
答:
这个班有9人,一共有树苗59棵。
例2、学校把一些彩色铅笔分给美术组的同学,如果每人分给五枝,则剩下45枝,如果每人分给7枝,则剩下3枝。
求美术组有多少同学?
彩色铅笔共有几枝?
(45-3)÷
(7-5)=21(人)
21×
5+45=150(枝)答:
略。
四、年龄问题:
年龄问题的主要特点是两人的年龄差不变,而倍数差却发生变化。
常用的计算公式是:
成倍时小的年龄=大小年龄之差÷
(倍数-1)
几年前的年龄=小的现年-成倍数时小的年龄
几年后的年龄=成倍时小的年龄-小的现在年龄
例父亲今年54岁,儿子今年12岁。
几年后父亲的年龄是儿子年龄的4倍?
(54-12)÷
(4-1)=42÷
3=14(岁)→儿子几年后的年龄
14-12=2(年)→2年后
2年后父亲的年龄是儿子的4倍。
例2、父亲今年的年龄是54岁,儿子今年有12岁。
几年前父亲的年龄是儿子年龄的7倍?
(7-1)=42÷
6=7(岁)→儿子几年前的年龄
12-7=5(年)→5年前
5年前父亲的年龄是儿子的7倍。
例3、王刚父母今年的年龄和是148岁,父亲年龄的3倍与母亲年龄的差比年龄和多4岁。
王刚父母亲今年的年龄各是多少岁?
(148×
2+4)÷
(3+1)=300÷
4=75(岁)→父亲的年龄
148-75=73(岁)→母亲的年龄
王刚的父亲今年75岁,母亲今年73岁。
或:
(148+2)÷
2=150÷
2=75(岁)75-2=73(岁)
五、鸡兔同笼问题:
已知鸡兔的总只数和总足数,求鸡兔各有多少只的一类应用题,叫做鸡兔问题,也叫"
龟鹤问题"
、"
置换问题"
一般先假设都是鸡(或兔),然后以兔(或鸡)置换鸡(或兔)。
常用的基本公式有:
(总足数-鸡足数×
总只数)÷
每只鸡兔足数的差=兔数
(兔足数×
总只数-总足数)÷
每只鸡兔足数的差=鸡数
例:
鸡兔同笼共有24只。
有64条腿。
求笼中的鸡和兔各有多少只?
(64-2×
24)÷
(4-2)=(64-48)÷
(4-2)=16÷
2=8(只)→兔的只数
24-8=16(只)→鸡的只数
答:
笼中的兔有8只,鸡有16只。
六、牛吃草问题(船漏水问题):
若干头牛在一片有限范围内的草地上吃草。
牛一边吃草,草地上一边长草。
当增加(或减少)牛的数量时,这片草地上的草经过多少时间就刚好吃完呢?
例1、一片草地,可供15头牛吃10天,而供25头牛吃,可吃5天。
如果青草每天生长速度一样,那么这片草地若供10头牛吃,可以吃几天?
一般把1头牛每天的吃草量看作每份数,那么15头牛吃10天,其中就有草地上原有的草,加上这片草地10天长出草,以下类推......其中可以发现25头牛5天的吃草量比15头牛10天的吃草量要少。
原因是因为其一,用的时间少;
其二,对应的长出来的草也少。
这个差就是这片草地5天长出来的草。
每天长出来的草可供5头牛吃一天。
如此当供10牛吃时,拿出5头牛专门吃每天长出来的草,余下的牛吃草地上原有的草。
(15×
10-25×
5)÷
(10-5)=(150-125)÷
(10-5)=25÷
5=5(头)→可供5头牛吃一天。
150-10×
5=150-50=100(头)→草地上原有的草可供100头牛吃一天
100÷
(10-5)=100÷
5=20(天)
若供10头牛吃,可以吃20天。
例2、一口井匀速往上涌水,用4部抽水机100分钟可以抽干;
若用6部同样的抽水机则50分钟可以抽干。
现在用7部同样的抽水机,多少分钟可以抽干这口井里的水?
(100×
4-50×
6)÷
(100-50)=(400-300)÷
(100-50)=100÷
50=2
400-100×
2=400-200=200
200÷
(7-2)=200÷
5=40(分)
用7部同样的抽水机,40分钟可以抽干这口井里的水。
七、相遇问题
相遇路程=速度和×
相遇时间
相遇时间=相遇路程÷
速度和
速度和=相遇路程÷
相遇时间
八、追及问题
追及距离=速度差×
追及时间追及时间=追及距离÷
速度差
速度差=追及距离÷
追及时间
十、流水问题
顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷
2水流速度=(顺流速度-逆流速度)÷
2
怎么复习小学数学知识点
小学数学复习是对所学过知识进行再学习的过程,由于复习面广量大,时间紧,内容多,为使复习更贴近实际,从而用较少时间达到较好的复习效果,为此提出以下几点复习建议:
一、制定切实可行的复习计划,并认真执行计划。
为使复习具有针对性,目的性和可行性,找准重点、难点,大纲(课程标准)是复习依据,教材是复习的蓝本。
复习时要弄清学习中的难点、疑点及各知识点易出错的原因,这样做到复习有针对性,可收到事半功倍的效果。
二、分类整理、梳理,强化复习的系统性。
复习的重要特点就是在系统原理的指导下,对所学知识进行系统的整理,使之形成一个较完整的知识体体系,这样有利于知识的系统化和对其内在联系的把握,便于融合贯通。
做到梳理--训练--拓展,有序发展,真正提高复习的效果。
三、辨析比较,区分弄清易混概念。
对于易混淆的概念,首先抓住意义方面的比较,再者是对易混概念的分析,这样能全面把握概念的本质,避免不同概念的干扰,另外对易混的方法也应进行比较,以明确解题方法。
四、一题多解,多题一解,提高解题的灵活性。
有些题目,可以从不同的角度去分析,得到不同的解题方法。
一题多解可以培养分析问题的能力。
灵活解题的能力。
不同的解题思路,列式不同,结果相同,收到殊途同归的效果。
同时也给其他同学以启迪,开阔解题思路。
有些应用题,虽题目形式不同,但它们的解题方法是一样的,故在复习时,要从不同的角度去思考,要对各类习题进行归类,这样才能使所所学知识融会贯通,提高解题灵活性。
五、有的放矢,挖掘创新。
机械的重复,什么都讲,什么都练是复习大忌,复习一定要有目的,有重点,要对所学知识归纳,概括。
习题要具有开放性,创新性,使思维得到充分发展,要正确评估自己,自觉补缺查漏,面对复杂多变的题目,严密审题,弄清知识结构关系和知识规律,发掘隐含条件,多思多找,得出自己的经验。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 小学 数学 知识点 汇总