数据挖掘外文文献翻译中英文Word格式文档下载.docx
- 文档编号:17132609
- 上传时间:2022-11-28
- 格式:DOCX
- 页数:6
- 大小:21.30KB
数据挖掘外文文献翻译中英文Word格式文档下载.docx
《数据挖掘外文文献翻译中英文Word格式文档下载.docx》由会员分享,可在线阅读,更多相关《数据挖掘外文文献翻译中英文Word格式文档下载.docx(6页珍藏版)》请在冰豆网上搜索。
英文原文
WhatisDataMining?
Simplystated,dataminingreferstoextractingor“mining”knowledgefromlargeamountsofdata.Thetermisactuallyamisnomer.Rememberthattheminingofgoldfromrocksorsandisreferredtoasgoldminingratherthanrockorsandmining.Thus,“datamining”shouldhavebeenmoreappropriatelynamed“knowledgeminingfromdata”,whichisunfortunatelysomewhatlong.“Knowledgemining”,ashorterterm,maynotreflecttheemphasisonminingfromlargeamountsofdata.Nevertheless,miningisavividtermcharacterizingtheprocessthatfindsasmallsetofpreciousnuggetsfromagreatdealofrawmaterial.Thus,suchamisnomerwhichcarriesboth“data”and“mining”becameapopularchoice.Therearemanyothertermscarryingasimilarorslightlydifferentmeaningtodatamining,suchasknowledgeminingfromdatabases,knowledgeextraction,data/patternanalysis,dataarchaeology,anddatadredging.
Manypeopletreatdataminingasasynonymforanotherpopularlyusedterm,“KnowledgeDiscoveryinDatabases”,orKDD.Alternatively,othersviewdataminingassimplyanessentialstepintheprocessofknowledgediscoveryindatabases.Knowledgediscoveryconsistsofaniterativesequenceofthefollowingsteps:
·
datacleaning:
toremovenoiseorirrelevantdata,·
dataintegration:
wheremultipledatasourcesmaybecombined,
dataselection:
wheredatarelevanttotheanalysistaskareretrievedfromthedatabase,
datatransformation:
wheredataaretransformedorconsolidatedintoformsappropriateforminingbyperformingsummaryoraggregationoperations,forinstance,
datamining:
anessentialprocesswhereintelligentmethodsareappliedinordertoextractdatapatterns,·
patternevaluation:
toidentifythetrulyinterestingpatternsrepresentingknowledgebasedonsomeinterestingnessmeasures,and
knowledgepresentation:
wherevisualizationandknowledgerepresentationtechniquesareusedtopresenttheminedknowledgetotheuser.
Thedataminingstepmayinteractwiththeuseroraknowledgebase.Theinterestingpatternsarepresentedtotheuser,andmaybestoredasnewknowledgeintheknowledgebase.Notethataccordingtothisview,dataminingisonlyonestepintheentireprocess,albeitanessentialonesinceituncovershiddenpatternsforevaluation.
Weagreethatdataminingisaknowledgediscoveryprocess.However,inindustry,inmedia,andinthedatabaseresearchmilieu,theterm“datamining”isbecomingmorepopularthanthelongertermof“knowledgediscoveryindatabases”.Therefore,inthisbook,wechoosetousetheterm“datamining”.Weadoptabroadviewofdataminingfunctionality:
dataminingistheprocessofdiscoveringinterestingknowledgefromlargeamountsofdatastoredeitherindatabases,datawarehouses,orotherinformationrepositories.
Basedonthisview,thearchitectureofatypicaldataminingsystemmayhavethefollowingmajorcomponents:
1.Database,datawarehouse,orotherinformationrepository.Thisisoneorasetofdatabases,datawarehouses,spreadsheets,orotherkindsofinformationrepositories.Datacleaninganddataintegrationtechniquesmaybeperformedonthedata.
2.Databaseordatawarehouseserver.Thedatabaseordatawarehouseserverisresponsibleforfetchingtherelevantdata,basedontheuser’sdataminingrequest.
3.Knowledgebase.Thisisthedomainknowledgethatisusedtoguidethesearch,orevaluatetheinterestingnessofresultingpatterns.Suchknowledgecanincludeconcepthierarchies,usedtoorganizeattributesorattributevaluesintodifferentlevelsofabstraction.Knowledgesuchasuserbeliefs,whichcanbeusedtoassessapattern’sinterestingnessbasedonitsunexpectedness,mayalsobeincluded.Otherexamplesofdomainknowledgeareadditionalinterestingnessconstraintsorthresholds,andmetadata(e.g.,describingdatafrommultipleheterogeneoussources).
4.Dataminingengine.Thisisessentialtothedataminingsystemandideallyconsistsofasetoffunctionalmodulesfortaskssuchascharacterization,associationanalysis,classification,evolutionanddeviationanalysis.
5.Patternevaluationmodule.Thiscomponenttypicallyemploysinterestingnessmeasuresandinteractswiththedataminingmodulessoastofocusthesearchtowardsinterestingpatterns.Itmayaccessinterestingnessthresholdsstoredintheknowledgebase.Alternatively,thepatternevaluationmodulemaybeintegratedwiththeminingmodule,dependingontheimplementationofthedataminingmethodused.Forefficientdatamining,itishighlyrecommendedtopushtheevaluationofpatterninterestingnessasdeepaspossibleintotheminingprocesssoastoconfinethesearchtoonlytheinterestingpatterns.
6.Graphicaluserinterface.Thismodulecommunicatesbetweenusersandthedataminingsystem,allowingtheusertointeractwiththesystembyspecifyingadataminingqueryortask,providinginformationtohelpfocusthesearch,andperformingexploratorydataminingbasedontheintermediatedataminingresults.Inaddition,thiscomponentallowstheusertobrowsedatabaseanddatawarehouseschemasordatastructures,evaluateminedpatterns,andvisualizethepatternsindifferentforms.
Fromadatawarehouseperspective,dataminingcanbeviewedasanadvancedstageofon-1ineanalyticalprocessing(OLAP).However,datamininggoesfarbeyondthenarrowscopeofsummarization-styleanalyticalprocessingofdatawarehousesystemsbyincorporatingmoreadvancedtechniquesfordataunderstanding.
Whiletheremaybemany“dataminingsystems”onthemarket,notallofthemcanperformtruedatamining.Adataanalysissystemthatdoesnothandlelargeamountsofdatacanatmostbecategorizedasamachinelearningsystem,astatisticaldataanalysistool,oranexperimentalsystemprototype.Asystemthatcanonlyperformdataorinformationretrieval,includingfindingaggregatevalues,orthatperformsdeductivequeryansweringinlargedatabasesshouldbemoreappropriatelycategorizedaseitheradatabasesystem,aninformationretrievalsystem,oradeductivedatabasesystem.
Datamininginvolvesanintegrationoftechniquesfrommult1pledisciplinessuchasdatabasetechnology,statistics,machinelearning,highperformancecomputing,patternrecognition,neuralnetworks,datavisualization,informationretrieval,imageandsignalprocessing,andspatialdataanalysis.Weadoptadatabaseperspectiveinourpresentationofdatamininginthisbook.Thatis,emphasisisplacedonefficientandscalabledataminingtechniquesforlargedatabases.Byperformingdatamining,interestingknowledge,regularities,orhigh-levelinformationcanbeextractedfromdatabasesandviewedorbrowsedfromdifferentangles.Thediscoveredknowledgecanbeappliedtodecisionmaking,processcontrol,informationmanagement,queryprocessing,andsoon.Therefore,dataminingisconsideredasoneofthemostimportantfrontiersindatabasesystemsandoneofthemostpromising,newdatabaseapplicationsintheinformationindustry.
Aclassificationofdataminingsystems
Dataminingisaninterdisciplinaryfield,theconfluenceofasetofdisciplines,includingdatabasesystems,statistics,machinelearning,visualization,andinformationscience.Moreover,dependingonthedataminingapproachused,techniquesfromotherdisciplinesmaybeapplied,suchasneuralnetworks,fuzzyandorroughsettheory,knowledgerepresentation,inductivelogicprogramming,orhighperformancecomputing.Dependingonthekindsofdatatobeminedoronthegivendataminingapplication,thedataminingsystemmayalsointegratetechniquesfromspatialdataanalysis,Informationretrieval,patternrecognition,imageanalysis,signalprocessing,computergraphics,Webtechnology,economics,orpsychology.
Becauseofthediversityofdisciplinescontributingtodatamining,dataminingresearchisexpectedtogeneratealargevarietyofdataminingsystems.Therefore,itisnecessarytoprovideaclearclassificationofdataminingsystems.Suchaclassificationmayhelppotentialusersdistinguishdataminingsystemsandidentifythosethatbestmatchtheirneeds.Dataminingsystemscanbecategorizedaccordingtovariouscriteria,asfollows.
1)Classificationaccordingtothekindsofdatabasesmined.Adataminingsystemcanbeclassifiedaccordingtothekindsofdatabasesmined.Databasesystemsthemselvescanbeclassifiedaccordingtodifferentcriteria(suchasdatamodels,orthetypesofdataorapplicationsinvolved),eachofwhichmayrequireitsowndataminingtechnique.Dataminingsystemscanthereforebeclassifiedaccordingly.
Forinstance,ifclassifyingaccordingtodatamodels,wemayhavearelational,transactional,object-oriented,object-relational,ordatawarehouseminingsystem.Ifclassifyingaccordingtothespecialtypesofdatahandled,wemayhaveaspatial,time-series,text,ormultimediadataminingsystem,oraWorld-WideWebminingsystem.Othersystemtypesincludeheterogeneousdataminingsystems,andlegacydataminingsystems.
2)Classificationaccordingtothekindsofknowledgemined.Dataminingsystemscanbecategorizedaccordingtothekindsofknowledgetheymine,i.e.,basedondataminingfunctionalities,suchascharacterization,discrimination,association,classification,clustering,trendandevolutionanalysis,deviationanalysis,similarityanalysis,etc.Acomprehensivedataminingsystemusuallyprovidesmultipleand/orintegrateddataminingfunctionalities.
Moreover,dataminingsystemscanalsobedistinguishedbasedonthegranularityorlevelsofabstractionoftheknowledgemined,includinggeneralizedknowledge(atahighlevelofabstraction),primit
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数据 挖掘 外文 文献 翻译 中英文