换热器毕业设计论文Word格式.docx
- 文档编号:17116150
- 上传时间:2022-11-28
- 格式:DOCX
- 页数:18
- 大小:97.61KB
换热器毕业设计论文Word格式.docx
《换热器毕业设计论文Word格式.docx》由会员分享,可在线阅读,更多相关《换热器毕业设计论文Word格式.docx(18页珍藏版)》请在冰豆网上搜索。
直接接触式换热器又称混合式换热器,是利用冷,热流体直接接触,彼此混合进行换热的换热器。
为增加两流体的接触面积,以达到充分换热,在设备中常放置填料和栅板,通常采用塔状结构。
如冷却塔,冷却冷凝器等。
(2)蓄热式换热器
蓄热式换热器又称回热式换热器,是借助于固体构成的蓄热体与热流体和冷流体交替接触,把热量从热流体传递给冷流体的换热器。
在换热器内首先由热流体通过,把热量积蓄在蓄热体中,然后由流体通过,由蓄热体把热量释放给冷流体。
由于两种流体交替与蓄热体接触,因此不可避免地会使两种流体少量混合。
若两种流体不允许有混合,则不采用蓄热式换热器。
(3)间壁式换热器
它又称表面式换热器,是利用间壁将进行热交换的冷热两种流体隔开,互不接触,热量由热流体通过间壁传递给冷流体的换热器。
间壁式换热器是工业生产中应用最为广泛的换热器,其形式多样,如管壳式换热器和板式换热器都属于间壁式换热器。
(4)中间载流体式换热器
它是把两个间壁式换热器由在其中循环的载流体连接起来的换热器。
载流体在高温流体换热器和低温流体换热器之间循环,在高温流体换热器中吸收热量,在低温流体换热器中把热量释放给低温流体,如热管式换热器等。
1.2.2按作用方式分类
(1)管式换热器
管式换热器都是通过管子壁面传热的换热器。
按传热管的结构形式不同大致可分为蛇管式换热器、套管式换热器、缠绕管式换热器和管壳式换热器等。
蛇管式换热器一般由金属或非金属管子,按需要弯曲成所需的形状,如圆盘形、螺旋形和长的蛇行等。
它是最早出现的一种换热设备,具有结构简单和操作方便等优点。
按使用状态不同,蛇管式换热器又可分为沉浸式蛇管和喷淋式蛇管两种。
套管式换热器是由两种不同大小直径的管子组装成同心管,两端用U形弯管将他们连接成排,并根据实际需要,排列组合成传热单元,换热时,一种流体走内管,另一种流体走内外管间的环隙,内管的壁面为传热面,一般按逆流方式进行换热。
两种流体都可以在较高的温度、压力、流速下进行换热。
套管式换热器的优点是结构简单,工作适应范围大,传热面积增减方便,两侧流体均可提高流速,使传热面的两侧都可有较高的传热系数;
缺点是单位传热面的金属消耗量大,检修、清洗和拆卸都较麻烦,在可拆连接处容易造成泄漏。
管壳式换热器是目前应用最为广泛的换热设备。
在圆筒形壳体中放置了许多管子组成的管束,管子的两端固定在管板上,管子的轴线与壳体的轴线平行。
为了增加流体在管外空间的流速并支撑管子,改善传热性能,在筒体内间隔安装多块折流板,用拉杆和顶距管将其与管子组装在一起。
换热器的壳体上和两侧的端盖上装有流体的进出口,有时还在其上装设检查孔,为了安置测试仪表用的接口管,排液孔和排气孔等。
缠绕管式换热器是芯筒与外筒之间的空间内将传热管按螺旋闲形状交替缠绕而成,相邻两成螺旋状传热管的螺旋方向相反,采用一定形状的定距管使之保持一定的距离。
缠绕状传热管可以采用单根绕制,也可采用两根或多跟组焊后一起绕制。
管内可以通过一种介质,称通道型缠绕管式换热器;
也可分别通过几种不同的介质,而每种介质所通过的传热管均汇集在各自的管板上,构成多通道型缠绕管式换热器。
缠绕管式换热器适用于同时处理多种介质等场合。
(2)板面式换热器
板面式换热器是通过板面进行传热的换热器。
板面式换热器按传热板面的结构形式可分为以下五种:
螺旋板式换热器、板式换热器、板翅式换热器、板壳是换热器和伞式换热器。
板面式换热器的传热性能要比管式换热器优越,由于结构上的特点,使流体能在较低的速度下就达到湍流状态,从而强化了传热。
板面是换热器采用板材制作,在大规模组织生产时,可降低设备成本,但其耐压性能比管式换热器差。
第2章浮头式换热器热力计算
浮头式换热器热力计算一般包括:
定性温度和物性参数,初选结构,管程热力计算及流量计算,壳程换热计算,传热系数,管程压降,壳程压降压强校核。
原始数据
油进口温度:
=175℃
油出口温度:
=155℃
油工作压力:
P1=
水进口温度:
=144℃
水出口温度:
=163℃
水工作压力:
P2=2MPa
壳体内径:
DS=700mm
管箱内径:
DN=750mm
换热管规格:
Φ19×
3L=8m
定性温度和物性参数计算
水的定性温度:
水的密度:
ρ2=913kg/m3
水的比热:
Cp2=kg℃
水的导热系数:
k2=m℃
水的粘度:
μ2=×
10-6
水的柏朗特数:
Pr2=
油(柴油)的定性温度:
油的密度:
ρ1=715kg/m3
油的比热:
Cp1=kJ/kg℃
油的导热系数:
k1=W/m℃
油的粘度:
μ1=×
10-4
油的普朗特数:
初选结构
管排列方式:
分程隔板两侧正方形,其余三角形
管子外径:
d0=
管子内径:
di=d0-(2×
3/1000)=
管长:
L=8m
管间距:
s==×
=
Ds=
管束中心排管数:
由公式
得Nc=22
总管子数:
由:
得Nt=400
选型:
采用双壳程四管程。
管程换热计算及流量计算
试选传热系数:
k0=240W/m2℃
传热面积:
由
得
逆流平均温差:
无量纲量参数:
温差校正系数:
按2壳程4管程查得
有效平均温差:
设计传热量:
换热效率:
取η=
油流量:
水流量:
管程流通截面(4管程):
管程流速:
管程雷诺数:
管程换热系数:
壳程换热计算
折流板的设计:
纵向折流板中间分程,横向安置弓形折流板。
弓形折流板弓高:
折流板间距:
壳程流通截面:
壳程流速:
壳程量流速
壳程当量直径:
壳程雷诺数:
切去弓形面积所占比例:
查得
壳程传热因子:
管外壁温度:
假定后再复核,设
=160℃
壁温下的粘度:
粘度修正系数:
传热系数
水侧污垢热阻:
m2℃/W
油侧污垢热阻:
管壁热阻:
r忽略
总传热热阻:
传热系数:
传热系数的比值:
管外壁热流密度:
=4118W/m2℃
=℃
误差校核:
==℃
误差不大,不必再重算。
管程压降
壁温:
壁温下水的粘度:
管程摩擦系数:
管子沿程压降:
回弯压降:
进出口管处质量流速:
进出管口处压降:
管程结垢校正系数:
根据r2及Φ19
3得
管程压降:
壳程压降
当量直径:
雷诺数:
壳程摩擦系数:
管束压降:
管嘴处质量流量:
进出口管压降:
导流板阻力系数:
取
导流板压降:
壳程结垢修正系数:
查表取
壳程压降:
压强校核
管程工作压力
,查表得
壳程工作压力
压强校核:
符合要求
第3章结构设计
结合热力计算确定换热流程、面积、排列方式、壳体、管箱、固定管板、分程隔板、以及其他零部件。
换热流程设计
采用2壳程4管程的2-4型换热器。
由于换热器尺寸不大,可以用一台,未考虑采用多台组合使用。
管程分程隔板采用丁字型结构,其主要优点是布管紧密。
壳体分程采用纵向隔板。
管程的分程隔板采用丁字型结构如图3-1所示,其主要优点是布管紧密。
图3-1丁字形隔板
管子和传热面积
换热管除要求具有足够的强度外,当采用胀管法固定时,还要求管子有良好的塑性,避免因胀接而产生裂缝。
焊接固定时,要求管子可焊性好,一般采用优质碳钢,以保证管子质量,一般对于无腐蚀性或腐蚀性不大的流体可采用10号钢和20号钢管,在强腐蚀性流体的情况下,可采用不锈钢、钢、铝等无缝管,在强腐蚀性流体的情况下,可采用石墨管、聚四氟乙烯管等。
由于水、油腐蚀性不大,故可采用碳钢,现选择20号钢的无缝钢管。
根据设计要求采用
的无缝钢管。
管子总数为400根。
其传热面积为:
管子排列方式
管子在管板上的排列方式,应力求均布、紧凑并考虑清扫和整体结构的要求。
基本的排列方式有五种:
等边三角形:
一边与流向垂直是常用的形式,与正方形排列相比传热系数高,可节省15%的管板面积。
适用于不生污垢、可用化学清洗污垢和允许压降较高的工况;
转角三角形。
三角形的一边与流向平行,其特点介于等边三角行和正方形两种排列之间,不宜用于卧式冷凝器,因下方管子形成的厚度越来越厚的凝膜会使传热削弱;
正方形排列最不紧凑,但便于机械清扫,常用于壳程介质易生污的浮头式换热器;
同心圆排列,用于小壳径换热器时比正三角形排列还紧凑,靠近壳体的地方布管均匀。
对于多管程换热器常采用组合排列法,每程均属正三角形排列,而各层面间呈正方形排列,以便于安排分程隔板。
综合比较以上几种布管方式,可采用组合排列形式,中间正方形,其余三角形。
布管位置如图3-2示。
十字形的走廊是为了装设分程隔板,故有壳程流体的泄漏和旁流的问题,共有406个管孔,其中6个孔为安装拉杆用。
图3-2管子排列
壳体
壳体材料除要满足一定的强度外,由于制造过程中经过卷板、冲压和焊接,故要求材料有一定的塑性和可焊性,一般采用含碳量较低的
钢、
钢等,现选用
钢。
壳体内径Ds=700mm
壳体壁厚:
为壳体工作温度下的许用应力,已知壳程设计温度为220℃,则tw<
220℃。
根据碳钢板许用应力,查得
=167MPa
为焊缝系数,取
,
为工作压力,等于
壁厚修正:
mm
则
实取
,之后要用有限元分析软件ANSYS进行强度校核。
管箱
3.5.1封头
根据压力容器设计规范采用材质为16MnR的标准椭圆封头,在满足强度要求的情况下,其壁厚可用以下公式计算:
已知管程设计温度为200℃,则tw<
200℃。
根据碳钢板许用应力,表查得
=170
p==×
,之后用ANSYS进行强度校核。
曲面高度:
D-封头的平均直径
直边高度
3.5.2壁厚
,之后要用ANSYS进行强度校核。
内径:
长度:
固定管板
外径:
板厚:
管板上开孔数与孔间距与管的排列一致。
管板材料选用Q235钢。
管子与管板的连接必须牢固、不泄漏、不产生大的应力变形,最常见的连接方法为胀接,胀接只能用于工作压力低与4MPa和温度低于300℃的场合;
对于高温、高压、易燃、易爆的运行条件多采用焊接,但采用焊接容易产生热应力且间隙中流体不流动很容易造成间隙腐蚀,采用胀焊并用的方法可以避免。
由于工作压力和温度都不是特别高,而且管子的间距比较大,管板和管子的连接采用胀接。
换热管在管板内的胀接长度L=38mm。
分程隔板
3.7.1管程分程隔板
管箱的分程在固定端管箱与浮头端管箱内都要安装分程隔板,隔板的布置见图3-1,由于两端管箱不是很长,卸下清洗时不用拆下来,因此可以将隔板直接焊接在箱体上。
管程隔板要考虑密封问题,它们的密封是通过在固定管板和浮动管板插隔板的槽内安放密封填料。
为了保证填料能起到密封作用,隔板的长度要按安装的尺寸进行计算。
3.7.2壳程分程隔板
安装壳体的分程隔板一方面要考虑到密封问题,另一方面要便于拆卸,因此采用图3-3所示的装置来安装隔板,当转动偏心杆手柄,偏心杆的凸轮推动与其相接的端头包有密封填料的板可使两端夹紧也可使其松开,便于拆卸。
对于浮头式管束要能够拆卸必须要隔板可以拆卸。
因此,此装置是必须要用的。
图3-3壳体分程隔板
折流板
采用弓形折流板,材料钢板,由于壳内分程,每程均采用半弓形如图3-4所示,布置方式采用垂直切口流动方向。
图3-4折流板
按一个壳程计算(计算过程见热力学计算)得:
拱高:
板间距:
板数:
由于考虑到实际安装时由于第一块折流板的位置壳体接管位置的影响,在一个壳程内折流板的实际个数应为32个,总的折流板数为64。
拉杆
材质为钢。
直径φ12,共6根。
拉杆是用来安装折流板的。
每个折流板最好由三个拉杆来定位。
其布置位置见图3-4。
进出口管
3.10.1管程进口管
按
则
进出口流通截面积为:
进出口管内径为:
取用
的热扎钢管。
3.10.2管程进出口管
的热轧钢管。
浮头箱
外头盖内直径:
外头盖同样采用材质为16MnR的标准椭圆形封头:
厚度
浮头
如图3-5所示为浮头端的装配图,包括碟形盖,钩圈法兰和浮动管板,由于浮动管板要与管子胀接后从壳体一端伸到另一端,因此管板的外直径应小于壳体内径,其主要尺寸如下:
图3-5浮头结构图
浮动管板外直径:
浮动管板厚:
浮头法兰外径:
浮头法兰内直径:
碟形盖内半径:
厚度:
取15mm
补强圈
在实际设计和名义厚度大于12mm时,接管Dg>
80mm就必须加开孔补强,当壳体名义厚度小于或等于12mm时,接管Dg>
50mm就必须加开孔补强。
因此对于Dg=100的管箱接管和Dg=150的壳体接管都必须进行开孔补强。
在补强圈标准中规定了补强圈的尺寸,按标准尺寸Dg=100的接管补强圈外直径D0=210mm,Dg=150的接管补强圈外直径D0=300mm。
补强圈的厚度可通过等面积补强法进行计算。
这里设定补强圈的厚度均为15mm。
法兰
3.14.1法兰密封面的形式
压力容器和管道法兰联接中,常用的密封面型式有以下三种。
(1)平面型密封面
密封表面是一个突出的光滑平面(又称突平面)。
这种密封面结构简单,加工方便,便于进行防腐衬里。
但螺栓上紧后,垫圈材料容易往两侧伸展,不易压紧,用于所需压紧力不高且介质无毒的场合。
(2)凹凸型密封面
它是由一个凸面和一个凹面所组成,在凹面上放置垫圈,压紧时,由于凹面的外侧有挡台,垫圈不会挤出来。
(3)榫槽型密封面
密封面是由一个榫和一个槽所组成,在垫圈放在槽内。
这种密封面规定不用非金属软垫圈,可采用缠绕式金属包垫圈,易获得良好的密封效果。
它适用于密封易燃、易爆、有毒介质。
密封面的凸面部分容易破坏,运输与装拆时都应注意。
在选取密封面时综合考虑介质因素和装拆的因素,壳体法兰均采用凹凸面型密封面,管箱接管法兰采用平面型密封面,壳体接管法兰采用凹凸型密封面。
3.14.2壳体法兰
壳体接管采用平颈对焊法兰,由于管箱、壳体、浮头箱直径都不一样,因此在选用法兰时,不能只按标准选取。
如图3-6为壳体与浮头箱的对接法兰,DN=800mm的是按标准选取的,而DN=700的法兰是按DN800法兰螺栓孔的位置来设计其尺寸的,
图3-6凹凸面密封法兰
大致尺寸如下:
DN=800mm的法兰,D=960mm,D1=915mm,D2=876mm,D3=866mm,H=115mm,h=35mm,δ=48mm,δ1=16倒圆角R=12mm,螺柱孔径r=26,配M24的双头螺柱。
DN=700mm的法兰,D=960mm,D1=915mm,D4=863mm,H=115mm,h=35mm,δ=46mm,δ1=16,倒圆角R=12mm,螺柱孔径r=26,配M24的双头螺柱。
其它的法兰装配尺寸见三维实体图。
3.14.3接管法兰
管箱接管采用平颈对焊法兰,如图示:
图3-7接管法兰
设计尺寸按化工机械标准设计,其尺寸大致如下:
管箱接管:
DN=100 PN=时:
N=132mm,K=190mm,D=235mm,H=66mm,H1=12mm,S=6mm,法兰厚度C=24mm螺栓孔直径L=22mm,配M20的螺栓8个
壳体接管:
DN=150 PN=时:
N=132mm,K=190mm,D=285mm,H=61mm,H1=12mm,S=,法兰厚度C=22mm,螺栓孔直径L=22mm,配M20的螺栓8个
另外,对焊时法兰要在颈部开坡口。
支座
卧式设备一般采用两个鞍座。
这是因为基础水平高度有可能不一致,如果使用多个支座,将会造成支座反力分布不均匀,从而引起设备的局部应力增大,因此采用两个支座。
采用双支座时,一个鞍座为固定支座,地脚螺栓为圆孔;
另一个鞍座为活动支座,地脚螺栓为长圆孔,配合两个螺母,第一个螺母拧紧后,倒退一圈,然后再用第二个螺母锁紧。
这样,可以使设备在温度变化是自由伸缩。
如图示:
图3-8鞍式支座
其主要尺寸为:
h=200mm;
l1=640mm;
b1=150mm;
=10mm;
=8mm;
l3=350mm;
b3=120mm;
=8mm;
弧长830mm;
b4=200mm;
=6mm;
e=36mm;
l2=460mm。
支座的安放位置也有一定的标准,一般支座与壳体端面的距离A<
,L为壳体的长度。
第4章安装与拆卸
设计中要考虑到安装问题,各零部件的结构不能影响整个装配体的安装,对于浮头式换热器,设计的初衷是可以拆下管束进行清洗。
因此也要考虑到拆卸的问题,其安装步骤可概述如下:
(1)焊接部件:
将所有的焊接部件进行焊接,包括管箱,壳体,浮头箱,碟形盖,支座等;
(2)安放折流板:
将拉杆的一个螺纹端拧入固定管板的螺纹孔,6根拉杆都装好,然后每套入一组定距杆再装一组折流板,依次把折流板装在拉杆上,直到最后两块折流板装上后用螺母套在拉杆的另一个螺纹端拧紧固定;
(3)安装管子:
将管子沿折流板的孔一根根穿入,并在固定管板上进行胀接。
另一端装上浮动管板并进行胀接;
(4)安装壳程隔板:
先将壳程隔板两侧的偏心杆机构装好,将壳程隔板从管束侧面装入并将一头插入固定管板上安装隔板的槽中;
图4-1安装示意图
(5)安装壳体:
将焊接好的壳体从浮动管板的那一端套入,使之前装好的组件(如图4-1示)完全装入壳体内,在壳程隔板的伸出端扭动偏心杆的摇柄使隔板两侧的密封填料挤紧,从而达到壳程的分程密封;
(6)安装管箱:
在固定管板端接已焊接好的管箱,将管箱法兰与壳体法兰对接用双头螺柱连接。
在浮头端装上钩圈法兰和碟形盖,(钩圈法兰由两个半圆形构成,使其安装方便)用双头螺柱连接;
(7)安装浮头箱:
将浮头箱法兰与壳体法兰对接用双头螺柱连接;
(8)安装支座:
将支座焊接到壳体上。
总结
通过三个月的努力,我的毕业设计终于圆满完成。
虽然做的过程很辛苦,但是看到自己的成果,我感到很欣慰。
作为大学三年的最后一道大作业—毕业设计,使我在各个方面都有了很大的提高,收获很大。
具体表现在以下几个方面:
通过在设计中经常查资料提高了我们检索和查阅资料的能力;
进一步扎实了所学的理论知识,对所学基础知识和专业知识进行了一次综合应用和系统复习;
思维方式和设计思想更加全面化和系统化。
养成了勤学好问的习惯,敢于面对困难,能够独立的查找和解决问题,也提高了自己的创新能力。
将理论知识和生产实际相结合,为以后的工作和学习打下了很好的基础,但是,设计过程中仍然存在不足之处,有的问题还需要进一步展开研究。
具体如下:
(1)管子的胀接没有进行分析计算;
(2)由于管程与壳程的分程使管子的排列不均匀,故存在旁流与侧流的问题,此问题尚未进行分析;
(3)通常在进液管口有挡板控制流速和引流,此结构尚未设计。
致谢
首先,向尊敬的导师李老师致以衷心的谢意,在大三毕业设计期间,李老师以其
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 换热器 毕业设计 论文