最新版北师大版小学数学五年级上册知识点总结课件Word文档格式.docx
- 文档编号:17110520
- 上传时间:2022-11-28
- 格式:DOCX
- 页数:13
- 大小:35.08KB
最新版北师大版小学数学五年级上册知识点总结课件Word文档格式.docx
《最新版北师大版小学数学五年级上册知识点总结课件Word文档格式.docx》由会员分享,可在线阅读,更多相关《最新版北师大版小学数学五年级上册知识点总结课件Word文档格式.docx(13页珍藏版)》请在冰豆网上搜索。
4.6767…的循环节是67,
6.9258258…的循环节是258)
E、用简便方法写循环小数的方法:
①只写一个循环节,并在这个循环节的首位和末位上面记一个小圆点。
②例如:
只有一个数字循环节的,就在这个数字上面记一个小圆点,5.333…写
·
作5.3。
有两位小数循环的,就在这两位数字上面,记上小圆点,7.4343…写作
·
7.43。
有三位或以上小数循环的,在首位和末位记上小数点,10.732732…写作
10.732。
7、除法中的变化规律:
①商不变性质:
被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。
②除数不变,被除数扩大,商随着扩大。
被除数不变,除数缩小,商扩大。
③被除数不变,除数缩小,商扩大。
第二单元轴对称和平移
轴对称:
1.轴对称图形:
如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形,那条直线就叫做对称轴。
两图形重合时互相重合的点叫做对应点,也叫对称点。
2.轴对称图形的性质:
对应点到对称轴的距离相等,对应点连线垂直于对称轴。
3.轴对称图形具有对称性。
4轴对称图形的法:
(1)找出所给图形的关键点,如图形的顶点、相交点、端点等;
(2)数出或量出图形关键点到对称轴的距离;
(3)在对称轴的另一侧找出关键点的对称点;
(4)按照所给图形的顺序连接各点,就画出所给图形的轴对称图形。
平移:
1.平移的定义:
在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。
2.平移的基本性质:
(1)平移不改变图形的形状和大小,只改变图形的位置。
(2)经过平移,对应线段,对应角分别相等;
对应点所连的线段平行且相等。
3.平移图形的画法:
(1)确定平移的方向与距离。
(2)将关键点按所需方向平移所需距离。
(3)按原来图形的连接方式依次连接各对应点并标上相应字母。
设计图案的基本方法:
平移、对称、旋转。
第三单元倍数和因数
㈠数的世界
知识点:
像0,1,2,3,4,5,6,…这样的数是自然数。
像-3,-2,-1,0,1,2,3,…这样的数是整数。
我们只在自然数(零除外)范围内研究倍数和因数。
倍数与因数是相互依存的关系,要说清谁是谁的倍数,谁是谁的因数。
补充知识点:
一个数的倍数的个数是无限的。
因数个数是有限的。
一个数最小的因数是1,最大的因数是它本身;
一个数最小的倍数是它本身,没有最大的倍数。
㈡探索活动
(一)2,5的倍数的特征
2的倍数的特征:
个位上是0,2,4,6,8的数是2的倍数。
5的倍数的特征:
个位上是0或5的数是5的倍数。
偶数和奇数的定义:
是2的倍数的数叫偶数,不是2的倍数的数叫奇数。
能判断一个数是不是2或5的倍数。
能判断一个非零自然数是奇数或偶数。
既是2的倍数,又是5的倍数的特征:
个位上是0的数既是2的倍数,又是5的倍数。
㈢探索活动
(二)3的倍数的特征
3的倍数的特征:
一个数各个数位上的数字的和是3的倍数,这个数就是3的倍数。
同时是2和3的倍数的特征:
个位上的数是0,2,4,6,8,并且各个数位上的数字的和是3的倍数的数,既是2的倍数,又是3的倍数。
同时是3和5的倍数的特征:
个位上的数是0或5,并且各个数位上的数字的和是3的倍数的数,既是3的倍数,又是5的倍数。
同时是2,3和5的倍数的特征:
个位上的数是0,并且各个数位上的数字的和是3的倍数的数,既是2和5的倍数,又是3的倍数。
6的倍数的特征:
既是2的倍数又是3的倍数的数。
9的倍数的特征:
一个数各个数位上的数字的和是9的倍数,这个数就是9的倍数。
㈣找因数
在1~100的自然数中,找出某个自然数的所有因数。
方法:
运用乘法算式,思考:
哪两个数相乘等于这个自然数。
一个数的因数的个数是有限的。
其中最小的因数是1,最大的因数是它本身。
㈤找质数
理解质数与合数的意义。
一个数只有1和它本身两个因数,这个数叫作质数。
一个数除了1和它本身以外还有别的因数,这个数叫作合数。
1既不是质数也不是合数。
1、倍数和因数是不能单独存在的。
我们可以用乘法算式来找因数和倍数。
一个数的倍数的个数有无限个,最小的倍数是它本身,没有最大的倍数。
2、个位上是0或5的数都是5的倍数。
个位上是0,2,4,6,8,的数都是2的倍数。
各位上的数的和是3的倍数,这个数就是3的倍数。
一个数各个数位上的数字之和是9的倍数,这个数就是9的倍数。
3、我们可以这样找因数:
因为12=1×
12=2×
6=3×
4,所以1,2,3,4,6,12是12的全部因数。
一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。
4、一个数只有1和它本身两个因数,这个数叫作质数。
1既不是质数,也不是合数。
自然数中最小的偶数是0,最小的奇数是1,最小的质数是2,最小的合数是4。
5、1~100以内的质数有:
2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97。
6、偶数+偶数=偶数奇数+奇数=偶数奇数+偶数=奇数
㈥数的奇偶性
运用“列表”“画示意图”等方法发现规律:
小船最初在南岸,从南岸驶向北岸,再从北岸驶回南岸,不断往返。
通过“列表”“画示意图”的方法会发现“奇数次在北岸,偶数次在南岸”的规律。
能够运用上面发现的数的奇偶性解决生活中的一些简单问题。
通过计算发现奇数、偶数相加奇偶性变化的规律:
偶数+偶数=偶数奇数+奇数=偶数偶数+奇数=奇数
偶数-偶数=偶数奇数-奇数=偶数偶数-奇数=奇数奇数-偶数=奇数
偶数×
偶数=偶数偶数×
奇数=偶数奇数×
奇数=奇数
第四单元多边形面积
㈠比较图形的面积
确定一个图形面积的大小,不仅是根据图形的形状,更重要的是根据图形所占格子的多少来确定。
认识平行四边形、三角形与梯形的底和高。
从平行四边形一边的某一点到对边画垂直线段,这条垂直线段就是平行四边形的高,这条对边是平行四边形的底。
三角形的一个顶点到对边的垂直线段是三角形的高,这条对边是三角形的底。
从梯形的两条平行线中的一条上的某一点到对边画垂直线段,这条垂直线段就是梯形的高,这条对边就是梯形的底。
高和底的关系是对应的。
用三角板画出平行四边形的高的方法:
把三角板的一条直角边与平行四边形的一条边重合,让三角板的另一条直角边过对边的某一点。
从这一点沿着三角板的另一条直角边向它的对边画垂线,这条垂线(从点到垂足)就是平行四边形一条边上的高。
注意:
从一条边上的任意一点可以向它的对边画高,也可以从另一条边上的任意一点向它的对边画高。
用三角板画出三角形的高的方法:
把三角板的一条直角边对准三角形的一个顶点,另一条直角边与这个顶点的对边重合。
从这个顶点沿着三角板的另一条直角边向它的对边画垂线,这条垂线(从顶点到垂足)就是三角形形一条边上的高。
用三角板画梯形的高的方法:
用同样的方法,画出梯形两条平行线之间的垂直线段,就是梯形的高。
㈣探索活动
(一)平行四边形的面积
平行四边形的面积=拼成的长方形的面积
长方形的长就是平行四边形的底;
长方形的宽就是平行四边形的高。
因此:
平行四边形面积=底×
高
如果用S表示平行四边形的面积,用a和h分别表示平行四边形的底和高,那么,平行四边形的面积公式可以写成:
S=ah
运用平行四边形的面积计算公式计算相关图形的面积并解决一些实际问题。
当平行四边形的底和高相同时,其面积也是相同的。
㈤探索活动
(二)三角形的面积
三角形面积=两个相同三角形拼成的平行四边形的面积÷
2
三角形的底和高,也就是平行四边形的底和高。
三角形面积=平行四边形的面积÷
2=底×
高÷
如果用S表示三角形的面积,用a和h分别表示三角形的底和高,那么,三角形的面积公式可以写成:
S=ah÷
运用三角形的面积公式,计算相关图形的面积,解决实际问题。
决定三角形面积的大小的因素不是图形的形状,而是三角形的底与高的长度,只要底和高相同,不同形状的三角形的面积也是相同的。
㈥探索活动(三)梯形的面积
梯形面积=两个相同梯形拼成的平行四边形的面积÷
梯形的上底与下底的和就是平行四边形的底,梯形的高就是平行四边形的高。
梯形面积=平行四边形面积÷
2=(上底+下底)×
如果用S表示梯形的面积,用a和b分别表示梯形的上底和下底,用h表示梯形的高,那么,梯形的面积公式可以写成:
S=(a+b)h÷
运用梯形面积的计算公式,解决相应的实际问题。
决定梯形面积的大小的因素不是图形的形状,而是梯形的上、下底之和与高的长度,只要上下底的和与高相同,不同形状的梯形的面积也是相同的。
第五单元分数的意义
㈠分数的再认识
在具体情境中,进一步认识分数。
分数对应的“整体”不同,分数所表示的部分的大小或具体数量也不一样,也就是分数具有相对性。
㈡分饼(真分数与假分数)
像
、
,…这样的分数叫作真分数。
特点:
分子都比分母小;
分数值小于1。
,…这样的分数叫作假分数。
分子比分母大,或者分子与分母相等;
分数值大于或等于1。
像2
,5
这样的分数叫作带分数。
由整数和真分数两部分组成的;
分数值大于1。
带分数的读法:
读作:
二又四分之一。
★补充知识点:
分子是分母倍数的假分数可以化成整数。
分子不是分母倍数的假分数可以化成带分数。
㈢分数与除法
理解分数与除法的关系:
被除数÷
除数=
(除数不为0)。
a÷
b=
(b≠0)
分数的分母不能是0。
因为在除法中,0不能做除数,因此根据分数与除法的关系,分数中的分母相当于除法中的除数,所以分母也不能是0。
运用分数与除法的关系解决实际问题。
用分数来表示两数相除的商。
根据分数与除法的关系把假分数化成带分数的方法:
用分子除以分母,把所得的商写在带分数的整数位置上,余数写在分数部分的分子上,仍用原来的分母作分母。
把带分数化成假分数的方法:
将整数与分母相乘的积加上原来的分子作分子,分母不变。
㈣分数基本性质
理解分数的基本性质:
分数的分子和分母都乘或除以相同的数(0除外),分数的大小不变。
联系分数与除法的关系以及“商不变”的规律,来理解分数的基本性质。
分子相当于被除数,分母相当于除数,被除数和除数同时乘或除以相同的数(0除外),商不变。
因此分数的分子和分母都乘或除以相同的数(0除外),分数的大小也是不变的。
运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。
㈤找最大公因数
理解公因数和最大公因数的意义。
几个数公有的因数是这几个数的公因数,其中最大的一个是它们的最大公因数。
找两个数的公因数和最大公因数的方法:
1、列举法:
运用找因数的方法先分别找到两个数各自的因数,再找出两个数的因数中相同的因数,这些数就是两个数的公因数;
再看看公因数中最大的是几,这个数就是两个数的最大公因数。
其他找最大公因数的方法:
2、找两个数的公因数和最大公因数,可以先找出两个数中较小的数的因数,再看看这些因数中有哪些也是较大的数的因数,那么这些数就是这两个数的公因数。
其中最大的就是这两个数的最大公因数。
找15和50的公因数和最大公因数:
可以先找出15的因数:
1,3,5,15。
再判断4个数中,哪几个也是50的因数,只有1和5,1和5就是15和50的公因数。
5就是它们的最大公因数。
3、如果两个数是不同的质数,那么这两个数的公因数只有1。
4、如果两个数是连续的自然数(0除外),那么这两个数的公因数只有1。
5、如果两个数具有倍数关系,那么较小的数就是这两个数的最大公因数。
6、短除法
偶数与所有奇数的最大公因数是1;
一个数与它的的倍数的最大公因数是它本身。
㈥约分
理解约分的含义:
把一个分数的分子、分母同时除以公因数,分数的值不变,这个过程叫做约分。
理解最简分数的含义:
这样分子、分母公因数只有1了,不能再约分了,这样的分数是最简分数。
掌握约分的方法:
约分的方法一般有两种,一种是用两个数的公因数一个一个去除,另一种是直接用两个数的最大公因数去除。
比较分数大小时,分母相同的、分子相同的可以直接比较,有些时候分子分母都不相同可以采用约分后进行比较的方法。
○
㈦找最小公倍数
理解公倍数和最小公倍数的含义。
两个数公有的倍数叫做这两个数的公倍数,其中最小的一个,叫做最小公倍数。
找两个数的公倍数和最小公倍数的方法:
1、先找出两个数各自的倍数(限制一定的范围内),再找出公有的倍数,找出两个数公有的倍数,看看这些公倍数中最小的是几,这个数就是两个数的最小公倍数。
两个数公倍数的个数是无限的,因此只有最小公倍数没有最大的公倍数。
其他找公倍数和最小公倍数的方法:
2、找两个数的公倍数和最小公倍数,可以先找出两个数中较大的数的倍数(限制一定的范围内),再看看这些倍数中有哪些也是较小的数的倍数,那么这些数就是这两个数的公倍数。
其中最小的就是这两个数的最小公倍数。
找6和9的公倍数和最小公倍数。
(50以内)可以先找出9的倍数(50以内)有:
9,18,27,36,45,再从这些数中找出6的倍数18,36,18和36就是6和9的公倍数,18是最小公倍数。
3、如果两个数是不同的质数,那么这两个数的最小公倍数是两个数的乘积。
4、如果两个数是连续的自然数(0除外),那么这两个数的最小公倍数是两个数的乘积。
5、如果两个数具有倍数关系,那么较大的数就是这两个数的最小公倍数。
6、短除法求最小公倍数
㈧分数的大小
理解通分的含义:
把分母不相同的分数化成和原来分数相等、并且分母相同的分数,这个过程叫作通分。
★通分的两个要点:
和原来分数相等;
分母相同。
■分数大小比较:
同分母分数相比较,分子越大分数越大。
同分子分数相比较,分母越小分数越大。
分子分母都不相同的分数相比较的方法:
用通分的方法把分母不相同的分数化成和原来分数相等、并且分母相同的分数,再比较大小。
(把两个分数化成分子相同的分数,再比较大小)
通分一般以最小公倍数作分母。
小学数学公式及运算律
一、运算定律:
1.加法交换律:
两个数相加,交换加数的位置,它们的和不变,即a+b=b+a。
加法结合律:
三个数相加,先把前两个数相加,再加上第三个数;
或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c)。
乘法交换律:
两个数相乘,交换因数的位置它们的积不变,即a×
b=b×
a。
乘法结合律:
三个数相乘,先把前两个数相乘,再乘以第三个数;
或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(a×
b)×
c=a×
(b×
c)。
乘法分配律:
两个数的和与一个数相乘,可以把两个加数分别与这个数相乘再把两个积相加,即(a+b)×
c+b×
c。
6.减法的性质:
从一个数里连续减去几个数,等于从这个数里减去所有减数的和,差不变,即a-b-c=a-(b+c);
一个数减去一个数再加上一个数,等于减去这两个数的差a-b+c=a-(b-c)。
7.除法的运算性质:
a÷
c)=a÷
b÷
c;
(b÷
c)=a÷
b×
c;
(a+b)÷
c=a÷
c+b÷
(a-b)÷
c-b÷
c
二、分数四则运算法
1、分数的加、减法则:
同分母的分数相加减,只把分子相加减,分母不变;
异分母的分数相加减,先通分,然后再加减;
带分数加减,把整数部分和分数部分分别相加减,再把所得的数合并起来。
三、平面几何图形的周长和面积
名称
字母意义
特征
周长C、面积S公式
正方形
a—边长
四条边都相等,四个角都是直角
正方形的周长=边长×
4公式:
C=4a
正方形的面积=边长×
边长公式:
S=a2
长方形
a—长
b—宽
两对边相等,四个角都是直角
长方形的周长=(长+宽)×
2
公式:
C=(a+b)×
长方形的面积=长×
宽
S=a×
b
平行四边形
a—底
h—高
两组对边分别平行且相等
平行四边形的面积=底×
公式:
S=a×
h
三角形
有三条边和三个角
三角形的面积=底×
2。
h÷
梯形
a—上底
b—下底
m—中位线
只有一组对边平行
梯形的面积=(上底+下底)×
S=(a+b)h÷
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 最新版 北师大 小学 数学 年级 上册 知识点 总结 课件