中考数学专题训练.doc
- 文档编号:1686930
- 上传时间:2022-10-23
- 格式:DOC
- 页数:5
- 大小:373KB
中考数学专题训练.doc
《中考数学专题训练.doc》由会员分享,可在线阅读,更多相关《中考数学专题训练.doc(5页珍藏版)》请在冰豆网上搜索。
1.如图,在平面直角坐标系中,矩形OABC的对角线OB,AC相交于点D,且BE∥AC,AE∥OB.
(1)求证:
四边形AEBD是菱形;
(2)如果OA=3,OC=2,求出经过点E的反比例函数解析式.
(第22题图)
2.(本题满分8分)如图是函数与函数在第一象限内的图象,点是的图象上一动点,轴于点A,交的图象于点,轴于点B,交的图象于点.
(1)求证:
D是BP的中点;
(2)求出四边形ODPC的面积.
3..二次函数y=的图象如图,点O为坐标原点,点A在y轴的正半轴上,点B、C在二次函数y=的图象上,四边形OBAC为菱形,且∠OBA=
120°,则菱形OBAC的面积为___________.
24.(本题满分10分)如图,两个全等的△和△重叠在一起,固定△,将△进行如下变换:
(1)如图1,△沿直线CB向右平移(即点F在线段CB上移动),连接AF、AD、BD,请直接写出与的关系;
(2)如图2,当点F平移到线段BC的中点时,若四边形AFBD为正方形,那么△应满足什么条件?
请给出证明;
(3)在
(2)的条件下,将△沿DF折叠,点E落在FA的延长线上的点G处,连接CG,请你在图3的位置画出图形,并求出的值.
(第24题图1)
(第24题图2)
(第24题图3)
1.
(1)问题
如图1,在四边形ABCD中,点P为AB上一点,∠DPC=∠A=∠B=90°.
求证:
AD·BC=AP·BP.
(2)探究
如图2,在四边形ABCD中,点P为AB上一点,当∠DPC=∠A=∠B=θ时,上述结论是否依然成立?
说明理由.
(3)应用
请利用
(1)
(2)获得的经验解决问题:
如图3,在△ABD中,AB=6,AD=BD=5.点P以每秒1个单位长度的速度,由点A出发,沿边AB向点B运动,且满足∠DPC=∠A.设点P的运动时间为t(秒),当以D为圆心,以DC为半径的圆与AB相切,求t的值.
2.如图1,在正方形ABCD的外侧,作两个等边三角形ADE和DCF,连接AF,BE.
(1)请判断:
AF与BE的数量关系是 ,位置关系是 ;
(2)如图2,若将条件“两个等边三角形ADE和DCF”变为“两个等腰三角形ADE和DCF,且EA=ED=FD=FC”,第
(1)问中的结论是否仍然成立?
请作出判断并给予证明;
(3)若三角形ADE和DCF为一般三角形,且AE=DF,ED=FC,第
(1)问中的结论都能成立吗?
请直接写出你的判断.
A
B
A
B
A
B
E
E
D
C
D
C
D
C
F
F
图1
图2
备用图
(第25题图)
3.问题提出】
如图,已知⊿ABC是等边三角形,点E在线段AB上,点D在直线BC上,且DE=EC,将⊿BCE绕点C顺时针旋转至⊿ACF,连接EF。
试证明:
AB=DB+AF。
【类比探究】
(1)如图,如果点E在线段AB的延长线上,其它条件不变,线段AB、DB、AF之间又有怎样的数量关系?
请说明理由。
(2)如果点E在线段BA的延长线上,其他条件不变,请在图的基础上将图形补充完整,并写出AB,DB,AF之间数量关系,不必说明理由。
4.如图,在平面直角坐标系中,抛物线与⊙M相交于A、B、C、D四点。
其中AB两点的坐标分别为(-1,0),(0,-2),点D在轴上且AD为⊙M的直径。
点E是⊙M与轴的另一个交点,过劣弧上的点F作FH⊥AD于点H,且FH=1.5。
(1)求点D的坐标及该抛物线的表达式;
(2)若点P是轴上的一个动点,试求出⊿PEF的周长最小时点P的坐标;
(3)在抛物线的对称轴上是否存在点Q,使⊿QCM是等腰三角形?
如果存在,请直接写出点Q的坐标;如果不存在,请说明理由。
5.在平面直角坐标系中,O为原点,直线y=-2x-1与y轴交于点A,与直线y=-x交于点B,点B关于原点的对称点为点C.
(第26题图)
O
x
y
A
C
B
(1)求过A,B,C三点的抛物线的解析式;
(2)P为抛物线上一点,它关于原点的对称点为Q.
①当四边形PBQC为菱形时,求点P的坐标;
②若点P的横坐标为t(-1<t<1),当t为何值时,四边形PBQC面积最大,并说明理由.
6.已知抛物线y=-mx2+4x+2m与x轴交于点A(α,0),B(β,0),且.
(1)求抛物线的解析式.
(2)抛物线的对称轴为l,与y轴的交点为C,顶点为D,点C关于l的对称点为E.是否存在x轴上的点M、y轴上的点N,使四边形DNME的周长最小?
若存在,请画出图形(保留作图痕迹),并求出周长的最小值;若不存在,请说明理由.
(3)若点P在抛物线上,点Q在x轴上,当以点D、E、P、Q为顶点的四边形是平行四边形时,求点P的坐标.
7.如图,抛物线经过A(),B(),C()三点.
(1)求抛物线的解析式;
(2)在直线AC下方的抛物线上有一点D,使得△DCA的面积最大,求点D的坐标;
(3)设点M是抛物线的顶点,试判断抛物线上是否存在点H满足?
若存在,请求出点H的坐标;若不存在,请说明理由.
(第25题图)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考 数学 专题 训练