初三《圆》章节知识点复习专题超级经典.doc
- 文档编号:1683876
- 上传时间:2022-10-23
- 格式:DOC
- 页数:7
- 大小:381.03KB
初三《圆》章节知识点复习专题超级经典.doc
《初三《圆》章节知识点复习专题超级经典.doc》由会员分享,可在线阅读,更多相关《初三《圆》章节知识点复习专题超级经典.doc(7页珍藏版)》请在冰豆网上搜索。
《圆》章节知识点复习
一、圆的概念
集合形式的概念:
1、圆可以看作是到定点的距离等于定长的点的集合;
2、圆的外部:
可以看作是到定点的距离大于定长的点的集合;
3、圆的内部:
可以看作是到定点的距离小于定长的点的集合
轨迹形式的概念:
1、圆:
到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;
(补充)2、垂直平分线:
到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);
3、角的平分线:
到角两边距离相等的点的轨迹是这个角的平分线;
4、到直线的距离相等的点的轨迹是:
平行于这条直线且到这条直线的距离等于定长的两条直线;
5、到两条平行线距离相等的点的轨迹是:
平行于这两条平行线且到两条直线距离都相等的一条直线。
二、点与圆的位置关系
1、点在圆内点在圆内;
2、点在圆上点在圆上;
3、点在圆外点在圆外;
三、直线与圆的位置关系
1、直线与圆相离无交点;
2、直线与圆相切有一个交点;
3、直线与圆相交有两个交点;
四、圆与圆的位置关系
外离(图1)无交点;
外切(图2)有一个交点;
相交(图3)有两个交点;
内切(图4)有一个交点;
内含(图5)无交点;
五、垂径定理
垂径定理:
垂直于弦的直径平分弦且平分弦所对的弧。
推论1:
(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;
(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;
(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
以上共4个定理,简称2推3定理:
此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:
①是直径②③④弧弧⑤弧弧
中任意2个条件推出其他3个结论。
推论2:
圆的两条平行弦所夹的弧相等。
即:
在⊙中,∵∥
∴弧弧
六、圆心角定理
圆心角定理:
同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。
此定理也称1推3定理,即上述四个结论中,
只要知道其中的1个相等,则可以推出其它的3个结论,
即:
①;②;
③;④弧弧
七、圆周角定理
1、圆周角定理:
同弧所对的圆周角等于它所对的圆心的角的一半。
即:
∵和是弧所对的圆心角和圆周角
∴
2、圆周角定理的推论:
推论1:
同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧;
即:
在⊙中,∵、都是所对的圆周角
∴
推论2:
半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径。
即:
在⊙中,∵是直径或∵
∴∴是直径
推论3:
若三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
即:
在△中,∵
∴△是直角三角形或
注:
此推论实是初二年级几何中矩形的推论:
在直角三角形中斜边上的中线等于斜边的一半的逆定理。
八、圆内接四边形
圆的内接四边形定理:
圆的内接四边形的对角互补,外角等于它的内对角。
即:
在⊙中,
∵四边形是内接四边形
∴
九、切线的性质与判定定理
(1)切线的判定定理:
过半径外端且垂直于半径的直线是切线;
两个条件:
过半径外端且垂直半径,二者缺一不可
即:
∵且过半径外端
∴是⊙的切线
(2)性质定理:
切线垂直于过切点的半径(如上图)
推论1:
过圆心垂直于切线的直线必过切点。
推论2:
过切点垂直于切线的直线必过圆心。
以上三个定理及推论也称二推一定理:
即:
①过圆心;②过切点;③垂直切线,三个条件中知道其中两个条件就能推出最后一个。
十、切线长定理
切线长定理:
从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角。
即:
∵、是的两条切线
∴
平分
十一、圆幂定理
(1)相交弦定理:
圆内两弦相交,交点分得的两条线段的乘积相等。
即:
在⊙中,∵弦、相交于点,
∴
(2)推论:
如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项。
即:
在⊙中,∵直径,
∴
(3)切割线定理:
从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。
即:
在⊙中,∵是切线,是割线
∴
(4)割线定理:
从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等(如上图)。
即:
在⊙中,∵、是割线
∴
十二、两圆公共弦定理
圆公共弦定理:
两圆圆心的连线垂直并且平分这两个圆的的公共弦。
如图:
垂直平分。
即:
∵⊙、⊙相交于、两点
∴垂直平分
十三、圆的公切线
两圆公切线长的计算公式:
(1)公切线长:
中,;
(2)外公切线长:
是半径之差;内公切线长:
是半径之和。
十四、圆内正多边形的计算
(1)正三角形
在⊙中△是正三角形,有关计算在中进行:
;
(2)正四边形
同理,四边形的有关计算在中进行,:
(3)正六边形
同理,六边形的有关计算在中进行,.
十五、扇形、圆柱和圆锥的相关计算公式
1、扇形:
(1)弧长公式:
;
(2)扇形面积公式:
:
圆心角:
扇形多对应的圆的半径:
扇形弧长:
扇形面积
2、圆柱:
(1)圆柱侧面展开图
=
(2)圆柱的体积:
(2)圆锥侧面展开图
(1)=
(2)圆锥的体积:
-7-
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初三 章节 知识点 复习 专题 超级 经典