面板数据模型设定检验方法Word文档下载推荐.docx
- 文档编号:16724720
- 上传时间:2022-11-25
- 格式:DOCX
- 页数:12
- 大小:25.58KB
面板数据模型设定检验方法Word文档下载推荐.docx
《面板数据模型设定检验方法Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《面板数据模型设定检验方法Word文档下载推荐.docx(12页珍藏版)》请在冰豆网上搜索。
分布。
以检验个体固定效应回归模型为例,介绍
检验的应
用。
建立假设
H0:
αi
=α。
模型中不同个体的截距相同(真实模
型为混合回归模型)。
H1:
模型中不同个体的截距项αi
不同(真实模型为个
体固定效应回归模型)。
统计量定义为:
F=
(SSEr
SSEu
/[(NT
-1)
(NT
)]
=
1)
/(NT
)SSEu
NT
(31)
SSEr
表示约束模型,即混合估计模型的残差平方和,
表示非约束模型,即个体固定效应回归模型的残差平
方和。
非约束模型比约束模型多了
N-1
个被估参数。
以案例
1
为例,已知
SSEr=4824588,SSEu=
2270386,
F=
(4824588
2270386)
/(15
2270386
/(105
15
182443
=8.1
22510
(32)
F0.05(6,
87)
1.8
因为
8.1
>
F0.05(14,
89)
1.8,推翻原假设,比较上述两种
模型,建立个体固定效应回归模型更合理。
4.2Hausman
对同一参数的两个估计量差异的显著性检验称作
Hausman
检验,简称
H
检验。
检验由
Hausman1978
年
提出,是在
Durbin(1914)和
Wu(1973)基础上发展起
来的。
所以
检验也称作
Wu-Hausman
检验,和
Durbin-
先介绍
检验原理
例如在检验单一方程中某个回归变量(解释变量)的
内生性问题时得到相应回归参数的两个估计量,一个是
OLS
估计量、一个是
2SLS
估计量。
估计量用来
克服回归变量可能存在的内生性。
如果模型的解释变量中
不存在内生性变量,那么
估计量和
估计量都具
有一致性,都有相同的概率极限分布。
如果模型的解释变
量中存在内生性变量,那么回归参数的
估计量是不一
致的而
估计量仍具有一致性,两个估计量将有不同的
概率极限分布。
ˆ~
更一般地,假定得到
q
个回归系数的两组估计量θ
和θ
,
则
检验的零假设和被择假设是:
H0:
plim(θ
-θ
H1:
≠
假定两个估计量的差作为统计量也具有一致性,在
H0
成立条件下,
N
(θ
d
VH)
=
(θ
ˆ
)'
(Var(θ
~)
-Var(θ
ˆ)
)-1
)~χ2(k)
VH
是(θ
)的极限分布方差矩阵。
检验统计量定
义为
ˆ~ˆˆ~
H=(θ
(N-1VH
)-1(θ
)→χ2(q)
(33)
ˆˆ~
其中(N-1VH
)是(θ
)的估计的方差协方差矩阵。
在
H0
成立条
件下,H
统计量渐近服从χ2(q)分布。
表示零假设中约
束条件个数。
ˆ
检验原理很简单,但实际中
的一致估计量VH
并不
容易。
一般来说,
ˆˆ~ˆ~ˆ
~
N-1VH
=Var(θ
)=Var(θ
)+Var(θ
)-2Cov(θ
θ
(34)
ˆ~ˆ
Var(θ
),Var(θ
)在一般软件计算中都能给出。
但
Cov(θ
不能给出。
致使
统计量(33)在实际中无法使用。
实际中也常进行如下检验。
模型中所有解释变量都是外生的。
其中某些解释变量都是内生的。
在原假设成立条件下,
∧∧
(36)
(34)式比较,这个结果只要求计算
)和
),H
统计量(36)具有实用性。
当θ表示一个标量时,H
统计量(36)退化为,
H=
~χ2
(1)
2
和
S
分别表示θ
的样本方差值。
检验用途很广。
可用来做模型丢失变量的检验、变量
内生性检验、模型形式设定检验、模型嵌套检验、建模顺
序检验等。
下面详细介绍面板数据中利用
统计量进行模型形式设
定的检验。
假定面板模型的误差项满足通常的假定条件,如果真实
的模型是随机效应回归模型,那么β的离差
估计量
βW
和随机
GLS
法估计量
β
RE
都具有一致性。
如果真实的模
~ˆ
型是个体固定效应回归模型,则参数β的离差
法估计
量
是一致估计量,但随机
估计量
是非一致估计
量。
可以通过
统计量检验(
)的非零显著性,检验面
板数据模型中是否存在个体固定效应。
原假设与备择假设
是
个体效应与回归变量无关(个体随机效应回归
模型)
个体效应与回归变量相关(个体固定效应回归
例:
ˆˆ
=0.7747,s(
0.00868(计算结果对应图
15);
βRE
=0.7246,s(βRE
~~
体固定效应估计结果)
0.0106(计算结果取自
EViwes
个
(0.7747
0.7246)2
0.01062
0.00872
68.4
=68.4
χ20.05
(1)
3.8,所以模型存在个体固定效
应。
应该建立个体固定效应回归模型。
5.面板数据建模案例分析
11000
9000
10000
pooled
regression
between
8000
7000
6000
5000
4000
3000
2000
2000400060008000
10000
12000
14000
IP
4000
5000
6000
7000
8000
9000
IPMEAN
图
13
混合估计散点图图
14
平均估计散点图
为例,图
是混合估计对应数据的散点图。
回归结果如下
CP
129.63
+
0.76
(2.0)(79.7)
是平均值数据散点图。
先对数据按个体求平均数
IP
然后用
组平均值数据回归,
-40.88+0.79
(-0.3)(41.1)
12000
-4000
-8000
within
2400
1600
1200
800
400
firstdiffrence3
-6000
-4000
-20000200040006000
CPM
0
400
800
1200
1600
DCP
离差估计散点图图
16
差分估计散点图
是离差数据散点图。
先计算
CP、IP
分别对
、
的离差数据,然
后用离差数据计算
回归。
CPM
0.77
IPM
(90)
是一阶差分数据散点图。
先对
各个体作一阶差分,然后用一
阶差分数据回归。
DCP
0.71
DIP
(24)
案例
2(file:
5panel01a)美国公路交通事故死亡人数与啤酒税的关系研究
见
Stock
J
and
M
W
Watson,
Introduction
to
Econometrics,
Addison
Wesley,
2003
第
8
章。
美国每年有
4
万高速公路交通事故,约
1/3
涉及酒后驾车。
这个比率在饮酒高峰期会上升。
早晨
1~3
点
25%的司机饮酒。
饮酒司机出交通
事故数是不饮酒司机的
倍。
现有
1982~1988
年
48
个州共
336
组美国公路交
通事故死亡人数(number)与啤酒税(beertax)的数据。
VFR82
vs.
BEER82
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.00.40.81.21.62.02.42.8
VFR88
BEER88
3.6
3.2
2.8
2.4
1.6
1.2
0.0
0.4
0.8
1.2
1.6
2.0
17
1982
年数据散点图(File:
5panel01a-graph01)图
18
1988
5panel01a-
graph07)
年数据的估计结果(散点图见图
17)
∧
number
2.01
0.15
beertax1982
(0.15)(0.13)
18)
1.86
0.44
beertax1988
(0.11)(0.13)
0.5
BEERTAX
19
混合估计共
个观测值。
估计结果仍不可靠。
(file:
5panel01b)
年混合数据估计结果(散点图见图
19)
1.85
0.36
beertax1982~1988
(42.5)(5.9)SSE=98.75
显然以上三种估计结果都不可靠(回归参数符号不对)。
原因是啤酒税之外
还有许多因素影响交通事故死亡人数。
个体固定效应估计结果(散点图见图
it
2.375
+…
0.66
beertax
it
(24.5)(-3.5)SSE=10.35
双固定效应估计结果(散点图见图
2.37
0.65
(23.3)(-3.25)SSE=9.92
以上两种回归系数的估计结果非常近似。
下面的
检验证实参数-0.66
0.65
比较合理。
用
检验判断应该建立混合模型还是个体固定效应模型。
混合回归模型(约束截距项为同一参数)。
各不相同。
个体固定效应回归模型(截距项任意取值)
2)
(以
EViwes5.0
计算自由度)
(98.75
10.35)
48
10.35
/(336
50)
1.84
0.0362
50.8
F0.05(48,
286)
50.8
1.2,推翻原假设,比较上述两种模型,建立个体固
定效应回归模型更合理。
下面讨论面板差分数据的估计结果。
利用
年和
年数据的差分数
据得估计结果(散点图见图
3)
-0.072
1.04
(beertax1988
beertax1982)
(0.065)(0.36)
.6
.4
.2
.0
-.2
-.4
-.6
-1.6-1.2-0.8-0.40.00.40.8
VFR88-VFR82
20
差分数据散点图(File:
5panel01a-
graph08)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 面板 数据模型 设定 检验 方法