工业机器人结构设计文档格式.docx
- 文档编号:16648136
- 上传时间:2022-11-25
- 格式:DOCX
- 页数:22
- 大小:128.53KB
工业机器人结构设计文档格式.docx
《工业机器人结构设计文档格式.docx》由会员分享,可在线阅读,更多相关《工业机器人结构设计文档格式.docx(22页珍藏版)》请在冰豆网上搜索。
即与物件接触的部件。
由于与物件接触的形式不同,可分为夹持式手部与吸附式手部。
在本课题中我们采用夹持式手部结构。
夹持式手部由手指(或手爪)与传动机构所构成。
手指就是与物件直接接触的构件,常用的手指运动形式有回转型与平移型。
回转型手指结构简单,制造容易,故应用较广泛。
平移型手指应用较少,其原因就是结构比较复杂,但平移型手指夹持圆形零件时,工件直径变化不影响其轴心的位置,因此适宜夹持直径变化范围大的工件。
手指结构取决于被抓取物件的表面形状、被抓部位(就是外廓或就是内孔)与物件的重量及尺寸。
常用的指形有平面的、V形面的与曲面的,手指有外夹式与内撑式,指数有双指式、多指式与双手双指式等。
而传动机构则就是向手指传递运动与动力。
传动机构型式较多常用的有:
滑槽杠杆式、连杆杠杆式、斜面杠杆式、齿轮齿条式、丝杠螺母弹簧式与重力式等。
(2)手腕
手腕就是连接手部与手臂的部件,并可用来调整被抓取物件的方位(即姿势)。
(3)手臂
手臂就是支承被抓物件、手部、手腕的重要部件。
手臂的作用就是带动手指去抓取物件,并按预定要求将其搬运到指定的位置。
工业机械手的手臂通常由驱动手臂运动的部件(如油缸、气缸、齿轮齿条机构、连杆机构、螺旋机构与凸轮机构等)与驱动源(如液压、气压或电机等)相配合,以实现手臂的各种运动。
(4)立柱
立柱就是支承手臂的部件,立柱也可以就是手臂的一部分,手臂的回转运动与升降(或俯仰)运动均与立柱有密切的联系。
机械手的立柱因工作需要,有时也可作横向移动,即称为可移式立柱。
(5)行走机构
当工业机械手需要完成较远距离的操作或扩大使用范围时,可在机座上安滚轮式行走机构可分装滚轮、轨道等行走机构,以实现工业机械手的整机运动。
滚轮式分为有轨的与无轨的两种。
驱动滚轮运动则应另外增设机械传动装置。
(6)机座
机座就是机械手的基础部分,机械手执行机构的各部件与驱动系统均安装于机座上,故起支撑与连接的作用。
2、驱动系统
驱动系统就是驱动工业机械手执行机构运动的动力装置调节装置与辅助装置组成。
常用的驱动系统有液压传动、气压传动、机械传动。
现在工业机械手的驱动系统大多采用液压传动。
3、控制系统
控制系统就是支配着工业机械手按规定的要求运动的系统。
目前工业机械手的控制系统一般由程序控制系统与电气定位(或机械挡块定位)系统组成。
控制系统有电气控制与射流控制两种,它支配着机械手按规定的程序运动,并记忆人们给予机械手的指令信息(如动作顺序、运动轨迹、运动速度及时间),同时按其控制系统的信息对执行机构发出指令,必要时可对机械手的动作进行监视,当动作有错误或发生故障时即发出报警信号。
4、位置检测装置
控制机械手执行机构的运动位置,并随时将执行机构的实际位置反馈给控制系统,并与设定的位置进行比较,然后通过控制系统进行调整,从而使执行机构以一定的精度达到设定位置。
1、2、2机械手的分类
工业机械手的种类很多,关于分类的问题,目前在国内尚无统一的分类标准,在此暂按使用范围、驱动方式与控制系统等进行分类。
1、按用途分
(1)专用机械手
它就是附属于主机的、具有固定程序而无独立控制系统的机械装置。
专用机械手具有动作少、工作对象单一、结构简单、使用可靠与造价低等特点,适用于大批量的自动化生产的自动换刀机械手,如自动机床、自动线的上、下料机械手。
(2)通用机械手
它就是一种具有独立控制系统的、程序可变的、动作灵活多样的机械手。
在其性能范围内,其动作程序就是可变的,通过调整可在不同场合使用,驱动系统与控制系统就是独立的。
通用机械手的工作范围大、定位精度高、通用性强,适用于不断变换生产品种的中小批量自动化的生产。
通用机械手按其控制定位的方式不同可分为简易型与伺服型两种:
简易型以“开一关”式控制定位,只能就是点位控制;
伺服型可以就是点位的,也可以实现连续轨迹控制,伺服型具有伺服系统定位控制系统,一般的伺服型通用机械手属于数控类型。
2、按驱动方式分
(1)液压传动机械手
液压传动机械手就是以液压的压力来驱动执行机构运动的机械手。
其主要特点就是:
抓重可达几百公斤以上、传动平稳、结构紧凑、动作灵敏。
但对密封装置要求严格,否则液压油的泄漏对机械手的工作性能有很大的影响,且不宜在高温、低温下工作。
若机械手采用电液伺服驱动系统,可实现连续轨迹控制,使机械手的通用性扩大,但就是电液伺服阀的制造精度高,油液过滤要求严格,成本高。
(2)气压传动机械手
气压传动机械手就是以压缩空气的压力来驱动执行机构运动的机械手。
介质源极为方便,输出力小,气动动作迅速,结构简单,成本低。
但就是,由于空气具有可压缩的特性,工作速度的稳定性较差,冲击大,而且气源压力较低,抓重一般在30公斤以下,在同样抓重条件下它比液压机械手的结构大,所以适用于高速、轻载、高温与粉尘大的环境中进行工作。
(3)机械传动机械手
机械传动机械手即由机械传动机构(如凸轮、连杆、齿轮与齿条、间歇机构等)驱动的机械手。
它就是一种附属于工作主机的专用机械手,其动力就是由工作机械传递的。
它的主要特点就是运动准确可靠,用于工作主机的上、下料。
动作频率大,但结构较大,动作程序不可变。
(4)电力传动机械手
电力传动机械手即有特殊结构的感应电动机、直线电机或功率步进电机直接驱动执行机构运动的机械手,因为不需要中间的转换机构,故机械结构简单。
其中直线电机机械手的运动速度快与行程长,维护与使用方便。
此类机械手目前还不多,很有发展前途。
3、按控制方式分
(1)点位控制
它的运动为空间点到点之间的移动,只能控制运动过程中几个点的位置,不能控制其运动轨迹。
若欲控制的点数多,则必然增加电气控制系统的复杂性。
目前使用的专用与通用工业机械手均属于此类。
(2)连续轨迹控制
它的运动轨迹为空间的任意连续曲线,其特点就是设定点为无限的,整个移动过程处于控制之下,可以实现平稳与准确的运动,并且使用范围广,但电气控制系统复杂。
这类工业机械手一般采用小型计算机进行控制。
1、3国内外发展状况
国外机器人领域发展近几年有如下几个趋势:
(1)工业机器人性能不断提高(高速度、高精度、高可靠性、便于操作与维修),而单机价格不断下降,平均单机价格从91年的10、3万美元降至97年的6、5万美元。
(2)机械结构向模块化、可重构化发展。
例如关节模块中的伺服电机、减速机、检测系统三位一体化。
由关节模块、连杆模块重组方式构造机器人整机,国外已有模块化装配机器人产品问市。
(3)工业机器人控制系统向基于PC机的开放型控制器方向发展,便于标准化、网络化。
器件集成度提高,控制柜日见小巧,且采用模块化结构,大大提高了系统的可靠性、易操作性与可维修性。
(4)机器人中的传感器作用日益重要,除采用传统的位置、速度、加速度等传感器外,装配、焊接机器人还应用了视觉、力觉等传感器,而遥控机器人则采用视觉、声觉、力觉、触觉等多传感器的融合技术来进行环境建模及决策控制。
多传感器融合配置技术在产品化系统中已有成熟应用。
(5)虚拟现实技术在机器人中的作用已从仿真、预演发展到用于过程控制,如使遥控机器人操作者产生置身于远端作业环境中的感觉来操纵机器人。
(6)当代遥控机器人系统的发展特点不就是追求全自动化系统,而就是致力于操作者与机器人的人机交互控制,即遥控加局部自主系统构成完整的监控遥控操作系统,使智能机器人走出实验室进入实用化阶段。
美国发射到火星上的“索杰纳”机器人就就是这种系统成功应用的最著名实例。
(7)机器人化机械开始兴起。
从94年美国开发出“虚拟轴机床”以来,这种新型装置已成为国际研究的热点之一,纷纷探索开拓其实际应用的领域。
我国的工业机器人从80年代“七五”科技攻关开始起步,在国家的支持下,通过“七五”、“八五”科技攻关,目前己基本掌握了机器人操作机的设计制造技术、控制系统硬件与软件设计技术、运动学与轨迹规划技术,生产了部分机器人关键元器件,开发出喷漆、弧焊、点焊、装配、搬运等机器人,其中有130多台套喷漆机器人在二十余家企业的近30条自动喷漆生产线(站)上获得规模应用,弧焊机器人己应用在汽车制造厂的焊装线上。
但总的来瞧,我国的工业机器人技术及其工程应用的水平与国外比还有一定的距离,如:
可靠性低于国外产品,机器人应用工程起步较晚,应用领域窄,生产线系统技术与国外比有差距。
在应用规模上,我国己安装的国产工业机器人约200台,约占全球已安装台数的万分之四。
以上原因主要就是没有形成机器人产业,当前我国的机器人生产都就是应用户的要求,“一客户,一次重新设计”,品种规格多、批量小、零部件通用化程度低、供货周期长、成本也不低,而且质量、可靠性不稳定。
因此迫切需要解决产业化前期的关键技术,对产品进行全面规划,搞好系列化、通用化、模块化设计,积极推进产业化进程。
我国的智能机器人与特种机器人在“863”计划的支持下,也取得了不少成果。
其中最为突出的就是水下机器人,6000m水下无缆机器人的成果居世界领先水平,还开发出直接遥控机器人、双臂协调控制机器人、爬壁机器人、管道机器人等机种。
在机器人视觉、力觉、触觉、声觉等基础技术的开发应用上开展了不少工作,有了一定的发展基础。
但就是在多传感器信息融合控制技术、遥控加局部自主系统遥控机器人、智能装配机器人、机器人化机械等的开发应用方面则刚刚起步,与国外先进水平差距较大,需要在原有成绩的基础上,有重点地系统攻关,才能形成系统配套可供实用的技术与产品。
1、4课题的提出及主要任务
1、4、1课题的提出
进入21世纪,随着我国人口老龄化的提前到来,近来在东南沿海出现在大量的缺工现象,迫切要求我们提高劳动生产率,降低工人的劳动强度,提高我国工业自动化水平势在必行,本设计的目的就就是设计一个气动搬运机械手,应用于工业自动化生产线,把工业产品从一条生产线搬运到另外一条生产线,实现自动化生产,减轻工人大量的重复性劳动,同时又可以提高劳动生产率。
现在的机械手大多采用液压传动,液压传动存在以下几个缺点:
(1)液压传动在工作过程中常有较多的能量损失(摩擦损失、泄露损失等),液压传动易泄漏,不仅污染工作场地,限制其应用范围,可能引起失火事故,而且影响执行部分的运动平稳性及正确性。
(2)工作时受温度变化影响较大。
油温变化时,液体粘度变化,引起运动特性变化。
(3)因液压脉动与液体中混入空气,易产生噪声。
(4)为了减少泄漏,液压元件的制造工艺水平要求较高,故价格较高,且使用维护需要较高技术水平。
鉴于以上这些缺陷,采用气动技术有以下优点:
(1)介质提取与处理方便。
气压传动工作压力较低,工作介质提取容易,而后排入大气,处理方便,一般不需设置回收管道与容器,介质清洁,管道不易堵存在介质变质及补充的问题。
(2)阻力损失与泄漏较小,在压缩空气的输送过程中,阻力损失较小,空气便于集中供应与远距离输送。
外泄漏不会像液压传动那样造成压力明显降低与严重污染。
(3)动作迅速,反应灵敏。
气动系统一般只需要0、02s-0、3s即可建立起所需的压力与速度。
气动系统也能实现过载保护,便于自动控制。
(4)能源可储存。
压缩空气可存贮在储气罐中,因此,发生突然断电等情况时,机器及其工艺流程不致突然中断。
(5)工作环境适应性好。
在易燃、易爆、多尘埃、强磁、强辐射、振动等恶劣环境中,气压传动与控制系统比机械、电器及液压系统优越,而且不会因温度变化影响传动及控制性能。
(6)成本低廉。
由于气动系统工作压力较低,因此降低了气动元件、辅件的材质与加工精度要求,制造容易,成本较低。
传统观点认为:
由于气体具有可压缩性,因此,在气动伺服系统中要实现高精度定位比较困难(尤其在高速情况下,似乎更难想象)。
此外气源工作压力较低,抓举力较小。
虽然气动技术作为机器人中的驱动功能已有部分被工业界所接受,而且对于不太复杂的机械手,用气动元件组成的控制系统己被接受,但由于气动机器人这一体系己经取得的一系列重要进展过去介绍得不够,因此在工业自动化领域里,对气动机械手、气动机器人的实用性与前景存在不少疑虑。
1、4、2课题的主要任务
本课题将要完成的主要任务如下:
(1)机械手为通用机械手,因此相对于专用机械手来说,它的适用面相对较广。
(2)选取机械手的座标型式与自由度
(3)设计出机械手的各执行机构,包括:
手部、手腕、手臂等部件的设计。
为了使通用性更强,手部设计成可更换结构,不仅可以应用于夹持式手指来抓取棒料工件,在工业需要的时候还可以用气流负压式吸盘来吸取板料工件。
2机械手的设计方案
对气动机械手的基本要求就是能快速、准确地抓-放与搬运物件,这就要求它们具有高精度、快速反应、一定的承载能力、足够的工作空间与灵活的自由度及在任意位置都能自动定位等特性。
设计气动机械手的原则就是:
(1)充分分析作业对象(工件)的作业技术要求,拟定最合理的作业工序与工艺,并满足系统功能要求与环境条件;
明确工件的结构形状与材料特性,定位精度要求,抓取、搬运时的受力特性、尺寸与质量参数等,从而进一步确定对机械手结构及运行控制的要求。
(2)尽量选用定型的标准组件,简化设计制造过程,兼顾通用性与专用性,并能实现柔性转换与编程控制。
本次设计的机械手就是通用气动上下料机械手,就是一种适合于成批或中、小批生产的、可以改变动作程序的自动搬运或操作设备,动强度大与操作单调频繁的生产场合。
2、1机械手的座标型式与自由度
按机械手手臂的不同运动形式及其组合情况,其座标型式可分为直角座标式、圆柱座标式、球座标式与关节式。
由于本机械手在上下料时手臂具有升降、收缩及回转运动,因此,采用圆柱座标型式。
相应的机械手具有立柱转动,立柱上下升降运动,手臂前后伸缩运动,与手腕回转运动四个自由度。
2015-5-1420-26-27、jpg(20、32KB,下载次数:
图2、1机械手的运动示意图
2、2机械手的手部结构方案设计
为了使机械手的通用性更强,把机械手的手部结构设计成可更换结构,当工件就是棒料时,使用夹持式手部;
当工件就是板料时,使用气流负压式吸盘。
2、3机械手的手腕结构方案设计
考虑到机械手的通用性,同时由于被抓取工件就是水平放置,因此手腕必须设有回转运动才可满足工作的要求。
因此,手腕设计成回转结构,实现手腕回转运动的机构为回转气缸。
2、4机械手的手臂结构方案设计
按照抓取工件的要求,本机械手的手臂有两个自由度,即手臂的伸缩、左右回转运动。
手臂的回转与升降运动就是通过立柱来实现的,立柱的横向移动即为手臂的横移。
手臂的各种运动由气缸来实现。
2、5机械手的驱动方案设计
由于气压传动系统的动作迅速,反应灵敏,阻力损失与泄漏较小,成本低廉因此本机械手采用气压传动方式。
2、6机械手的主要参数
1、机械手的最大抓重就是其规格的主参数,由于就是采用气动方式驱动,因此考虑抓取的物体不应该太重,查阅相关机械手的设计参数,结合工业生产的实际情况,本设计设计抓取的工件质量为10公斤
2、基本参数运动速度就是机械手主要的基本参数。
操作节拍对机械手速度提出了要求,设计速度过低限制了它的使用范围。
而影响机械手动作快慢的主要因素就是手臂伸缩及回转的速度。
该机械手最大移动速度设计为1、0m/s。
最大回转速度设计为90o/s。
平均移动速度为0、8m/s。
平均回转速度为60o/s。
机械手动作时有启动、停止过程的加、减速度存在,用速度一行程曲线来说明速度特性较为全面,因为平均速度与行程有关,故用平均速度表示速度的快慢更为符合速度特性。
除了运动速度以外,手臂设计的基本参数还有伸缩行程与工作半径。
大部分机械手设计成相当于人工坐着或站着且略有走动操作的空间。
过大的伸缩行程与工作半径,必然带来偏重力矩增大而刚性降低。
在这种情况下宜采用自动传送装置为好。
根据统计与比较,该机械手手臂的伸缩行程定为600mm,最大工作半径约为1400mm。
手臂升降行程定为120mm。
定位精度也就是基本参数之一。
该机械手的定位精度为±
1mm。
2、7机械手的技术参数列表
1、用途:
用于自动输送线的上下料。
2、设计技术参数:
(1)抓重:
10Kg
(2)自由度数:
4个自由度
(3)座标型式:
圆柱座标
(4)最大工作半径:
1400mm
(5)手臂最大中心高:
1250mm
(6)手臂运动参数:
伸缩行程600mm
伸缩速度400mm/s
升降行程120mm
升降速度250mm/s
回转范围0o-180o
回转速度90o/s
(7)手腕运动参数:
(8)手指夹持范围:
棒料:
φ80mm-150mm
(9)定位方式:
行程开关或可调机械挡块等
(10)定位精度:
±
1mm
(11)驱动方式:
气压传动
2015-5-1420-26-41、jpg(15、56KB,下载次数:
3手部结构设计
为了使机械手的通用性更强,把机械手的手部结构设计成可更换结构,当工件就是棒料时,使用夹持式手部。
如果有实际需要,还可以换成气压吸盘式结构,
3、1夹持式手部结构
夹持式手部结构由手指(或手爪)与传力机构所组成。
其传力结构形式比较多,如滑槽杠杆式、斜楔杠杆式、齿轮齿条式、弹簧杠杆式等。
3、1、1手指的形状与分类
夹持式就是最常见的一种,其中常用的有两指式、多指式与双手双指式:
按手指夹持工件的部位又可分为内卡式(或内涨式)与外夹式两种:
按模仿人手手指的动作,手指可分为一支点回转型,二支点回转型与移动型(或称直进型),其中以二支点回转型为基本型式。
当二支点回转型手指的两个回转支点的距离缩小到无穷小时,就变成了一支点回转型手指;
同理,当二支点回转型手指的手指长度变成无穷长时,就成为移动型。
回转型手指开闭角较小,结构简单,制造容易,应用广泛。
移动型应用较少,其结构比较复杂庞大,当移动型手指夹持直径变化的零件时不影响其轴心的位置,能适应不同直径的工件。
3、1、2设计时考虑的几个问题
(1)具有足够的握力(即夹紧力)
在确定手指的握力时,除考虑工件重量外,还应考虑在传送或操作过程中所产生的惯性力与振动,以保证工件不致产生松动或脱落。
(2)手指间应具有一定的开闭角
两手指张开与闭合的两个极限位置所夹的角度称为手指的开闭角。
手指的开闭角应保证工件能顺利进入或脱开,若夹持不同直径的工件,应按最大直径的工件考虑。
对于移动型手指只有开闭幅度的要求。
(3)保证工件准确定位
为使手指与被夹持工件保持准确的相对位置,必须根据被抓取工件的形状,选择相应的手指形状。
例如圆柱形工件采用带“V”形面的手指,以便自动定心。
(4)具有足够的强度与刚度
手指除受到被夹持工件的反作用力外,还受到机械手在运动过程中所产生的惯性力与振动的影响,要求有足够的强度与刚度以防折断或弯曲变形,当应尽量使结构简单紧凑,自重轻,并使手部的中心在手腕的回转轴线上,以使手腕的扭转力矩最小为佳。
(5)考虑被抓取对象的要求
根据机械手的工作需要,通过比较,我们采用的机械手的手部结构就是一支点两指回转型,由于工件多为圆柱形,故手指形状设计成V型,其结构如附图3、1所示。
3、1、3手部夹紧气缸的设计
1、手部驱动力计算
本课题气动机器人的手部结构如图3-2所示,其工件重量M=10kg,根据被夹持工件的直径80~150mm,选定V形手指的角度2θ=120°
b=120mm>
R=24mm
摩擦系数为υ=0、3
2015-5-1420-31-22、jpg(16、2KB,下载次数:
36上传
图3、1齿轮齿条式手部
(1)根据手部结构的传动示意图,其驱动力为:
P=b/RN
(2)根据手指夹持工件的方位,可得握力N计算公式:
2N·
sinθ·
υ=1/2Mg
N=Mg/(4sinθ·
υ)
=10x9、8/(4xsin60ox0、3)=94、3(N)
所以:
P=b/RN=9120x94、3/24=471、5(N)
(3)实际驱动力:
P实际≥pK1K2/η
式中:
η—齿轮齿条传动效率,取η=0、94
K1—安全系数,由机械手的工艺及设计要求确定,通常在1、2~2、0,取1、5;
K2—工件情况系数,主要考虑惯性力的影响,若被抓取工件的最大加速度取a=g时,则:
K2=1+a/g
P实际=471、5x1、5x2/0、94=1504、8(N)
夹持工件时所需夹紧气缸的驱动力为1504、8(N)。
2、气缸的直径
本气缸属于预缩型单作用气缸。
根据力平衡原理,单向作用气缸活塞杆上的输出推力必须克服弹簧的反作用力与活塞杆工作时的总阻力,其公式为:
F1=πD2P/4-Ft
F1-活塞杆上的推力/N
Ft-弹簧反作用力/N
P-气缸工作压力,选为0、4MPa
弹簧反作用按下式计算:
Ft=Gf(l+s)
Gf=Gd14/8d13n
Gf-弹簧刚度,N/m
l-弹簧预压缩量/mm
s-活塞行程/mm
d1-弹簧材料直径/mm
D1-弹簧中径/mm
n-弹簧有效圈数
G-弹簧材料剪切模量,一般取G=79、4x109Pa
查《机械设计手册—弹簧》,此处选用材料直径为3、5mm,中径为30mm,有效圈数为
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 工业 机器人 结构设计