第六单元百分数教案Word格式文档下载.docx
- 文档编号:16638506
- 上传时间:2022-11-25
- 格式:DOCX
- 页数:22
- 大小:30.84KB
第六单元百分数教案Word格式文档下载.docx
《第六单元百分数教案Word格式文档下载.docx》由会员分享,可在线阅读,更多相关《第六单元百分数教案Word格式文档下载.docx(22页珍藏版)》请在冰豆网上搜索。
问:
这下能判断吗?
看什么?
根据学生的回答板书:
这样能判断哪个杯更甜吗?
怎样就容易看出来了?
(通分)
小结:
百分数表示的是两个数量之间的倍数关系,是一个分率,后面不能带单位名称,所以百分数又叫百分率或百分比。
(板书)
2、百分数的写法:
注意:
百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。
(板书)师示范写35%。
请一位学生板演26%、36%,其他学生在本上写。
师生交流:
百分数怎样写规范、美观?
①两个小圆圈要写的小一点。
②斜线的倾斜程度。
3、四人小组交流,说说你收集的百分数,表示什么意思?
4、(全班交流)谁愿意向大家展示你收集的百分数?
说说它的意义。
5、课件出示老师收集的百分数:
读一读
(1)我国的耕地面积占世界耕地面积的7%;
(2)我国人口占世界人口的22%;
(3)在北京奥运会上,我国体育健儿共获得51枚金牌,占金牌总数的16.9%;
(4)我国发射人造卫星的成功率是100%。
这些百分数都表示什么意义,你知道吗?
看了这些信息,你想说什么?
三、百分数与分数的区别和联系。
1、小组讨论:
百分数与分数有什么区别和联系?
2、学生汇报:
学生可能回答:
①分子 ②分母 ③读法 ④意义等的不同。
3、课件出示:
下面哪个分数可以用百分数来表示?
哪个不能?
说说为什么?
一堆煤吨,运走了它的。
4、百分数是分数吗?
分母是100的分数是百分数吗?
得出结论:
分数即可以表示两个数之间的倍数关系,也可以表示一个具体的数量,百分数只能表示两个数之间的倍数关系。
百分数是特殊的分数。
四、拓展应用
1、百分数在我们的生活中无处不在,成语里也有百分数。
课件出示:
请将下列词语用百分数表示出来
十拿九稳 百里挑一 百战百胜 一举两得
五、课堂小结
1、这节课你对自己的表现满意吗?
用一个百分数表示你的满意程度。
2、对教师满意吗?
也用一个百分数表示。
3、最后,教师送给同学们一句名言,与大家共勉。
六、作业布置:
做一做
板书
设计
百分数的意义和写法
14%读作:
百分之十四
65.5%读作:
百分之六十五点五
120%读作:
百分之一百二十
教后
反思
百分数与小数互化
人教版小学数学六年级上册P84例1
1、让学生理解并掌握百分数和小数互化的方法,能正确地把小数化成百分数或把百分数化成小数;
在计算、比较,分析、探索百分数小数互化的规律的过程中,发展学生的抽象概括能力。
2、通过探索百分数和分数、小数互化的规律,激发学生的数学探索意识。
3、学生在教师的精心引导下,主动参与到数学活动中,通过合作交流,得出结论,提高数学素养。
百分数与小数互化的方法,能正确进行两者之间的互化。
归纳百分数与小数互化的方法。
一、复习导入
1、百分数的意义是什么?
指生回答。
表示一个数是另一数的百分之几的数叫百分数。
2、百分数与分数的区别在哪里?
为什么要把百分数单独列一单元?
百分数表示两个数之间的倍比关系,又叫百分比或百分率,不能带计量单位;
分数既可以表示两个数之间的倍比关系,叫分率,也可以表示具体的数量,能带计量单位。
百分数与分数既有联系又有区别,它在生活中广泛的运用到,所以有必要单独为一单元。
3、板书课题
二、合作探究
看到这个课题,你想知道什么?
为什么要转化?
怎样转化?
引导学生说出转化的意义。
一是便于计算,二是便于比较。
(板书),那怎么转化呢?
这就是我们今天主要研究的内容。
三、合作探究,学习新知
1、学生自学课本84页
2、小组讨论
3、指生上台汇报,集体交流小数转化成百分数的方法
(1)出示例1:
(要求学生讲)
(2)小老师甲:
要把小数化成百分数,要先把小数化成分母是100的分数,然后再把这个分数改写成百分数。
3÷
5=0.6=
=60%
4÷
6≈0.667=
=66.7%
(3)请大家观察一下,这个过程先把小数化成了分数,显得麻烦了些。
而我可以将小数直接化成百分数的。
只要把小数点向右移动两位,同时在后面添上百分号就行了。
(4)教师说明:
当小数点向右移动两位时,原数就扩大100倍,再添上百分号,又使它缩小100倍。
所以原数大小是不变的。
4、学百分数如何转化成小数的。
(1)出示例2:
(2)要把百分数化成小数,可以先把百分数改写成分母是100的分数,然后再用分子除以分母,把分数转化成小数。
(3)启发学生口述每题的转化过程,板书:
750×
20%
=750÷
=750×
0.2
=150(人)
(4)(把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位)
(5)让学生明白:
当把百分数的百分号去掉时,原数就扩大了100倍;
然后再把它的小数点向左移动两位,又使它缩小100倍,所以原数的大小不变。
四、拓展应用:
这节课你学会了什么?
还有什么不懂的问题?
六、布置作业:
练习十八6、7题
例1、3÷
例2750×
20%750×
=750×
0.2=750×
=150(人)=150(人)
“求一个数的百分之几是多少”练习
教材第87—88页练习十八第5、10、12—14题。
1、进一步理解百分数和小数、分数互化的方法,能正确熟练地进行互化,提高学生的数学素养。
2、学生能熟练掌握“求一个数的百分之几是多少”这类解决问题的数量关系和解题方法,并能正确地解答这类解决问题。
3、进一步提高学生对解决问题的分析能力。
百分数解决问题的解题方法。
多媒体课件。
一、复习回顾
1、根据前面的学习,回答下列问题。
(1)小数、分数如何化成百分数?
百分数如何化成小数、分数?
(2)求一个数的百分之几如何解答?
2、填空。
发芽率=()×
100%
出勤率=()×
100%
命中率=()×
二、基础练习
1、分别用分数、小数、百分数表示下列各图中的阴影部分。
(1)
(2)
分数(
)分数(
)
小数(
)小数(
百分数(
)百分数(
2、出示教材第87页第10题。
(1)全班学生一起思考,在练习本上写出自己的计算过程。
(2)四人一组分组讨论,比较
(1)、
(2)小题的不同之处,辨析解题方法的不同。
(3)小组代表发言,其他同学补充。
(4)小结:
题1是我们讲过的“求一个数的百分之几是多少”的典型题例,运用乘法计算。
题2是“已知一个数的百分之几是多少,求这个数”类问题,根据分数知识可要运用除法计算。
3、出示第13题。
(1)全班齐练,指名两个学生板演。
(2)集体讨论解题规律。
分别有几种解法,思路各有什么不同?
概括求百分数应用题的一般方法。
三、巩固练习
1、完成练习十八第5题。
独立练习,小组中互相检查。
2、完成练习十八第12题。
正确辨析单位“1”
3、完成练习十八第14题。
四、课后小结
在今天的练习活动中,你最大的收获是什么?
五、作业布置:
课后做一做
发芽率=()×
出勤率=()×
“求一个数比另一个数多(或少)百分之几”的解决问题
人教版小学数学六年级上册P89例3内容
1、让学生在现实情境中,理解并掌握“求一个数比另一个数多(少)百分之几”的基本思考方法,并能正确解决相关的实际问题。
2、让学生在探索“求一个数比另一个数多(少)百分之几”方法的过程中,进一步加深对百分数的理解。
3、体会百分数与日常生活的密切联系,增强自主探索和合作交流的意识,提高分析问题和解决问题的能力。
求一个数比另一个数多(或少)百分之几的应用题的解题方法。
理解求“一个数比另一个数多百分之几”这个问题的具体含义,弄清数量关系。
ppt课件等有关资料
一、复习引入
1、设疑:
解答“一个数是另一个数的百分之几”用什么方法?
2、列式计算:
4是9的百分之几?
50是200的百分之几?
3、解答这类百分数应用题的关键是什么?
4、出示课件复习题:
一个乡去年原计划造林12公顷,实际造林14公顷,实际造林是原计划的百
分之几?
5、学生读题,找出题中的单位1,并独立解答。
6、揭示课题:
如果把这道题的问题变为实际造林比原计划增加了百分之几?
应
该怎样解答呢?
这就是我们本节课要继续研究的比较复杂的百分数应用题。
二、师生互动,解决问题
1、出示例3
(1)指名读题。
(2)让学生找出题中的单位1,并画出线段图。
(3)找一名学生到前面板演,并说出自己画图的依据。
(4)启发学生思考:
求实际造林比原计划增长百分之几是哪两个量比较?
哪个量是单位1.(板书:
增加的÷
原计划的)
(5)学生尝试列式计算。
(1名同学板演)
(6)想一想这道题还有其他的做法吗?
板书:
14÷
12≈1.167=116.7%
116.4%-100%=16.7%
(7)比较两种算法的相同点是什么?
2、将例3中的问题改为“原计划比实际少百分之几”?
该如何解答呢?
(1)提问:
这道题中是那两个量进行比较?
把哪个量看成单位1,先求什么?
再求什么?
(2)学生列式,老师板书:
(14-12)÷
14
(3)比较观察:
将例3改变问题后的列式发生了怎样的变化?
为什么除数发生了变化?
三、拓展延伸
(1)求今年产量是去年产量的百分之几,是把(
)看作单位“1”,是(
)和(
)比,所以用(
)÷
(
).
(2)求今年小麦的产量比去年增产百分之几,是把(
)。
(3)求女生人数比男生人数少百分之几,是把(
(2).操场上有男生25人,女生20人。
女生人数比男生人数少百分之几?
(3).一辆自行车原价是312元,现价比原价降低了168元。
降低了百分之几?
(4).甲校学生人数比乙校多5%,乙校学生人数比甲校少百分之几?
四、全课小结
这节课我们学习了一类怎样的百分数应用题?
解答这类问题的关键是什么?
五、布置作业:
“求一个数比另一个数多(或少)百分之几”的应用题
例3、14÷
答:
(略)
“求比一个数多百分之几的数是多少”的解决问题
人教版小学数学六年级上册P89例4内容
1、掌握稍复杂的求比一个数多百分之几的数是多少的问题的解决方法;
能进一步理解百分数解决问题与相对应的分数解决问题之间的联系。
2、增强应用意识,体会百分数在实践生活中的应用。
3、提高学生类推、分析、解决问题的能力。
找准单位“1”,掌握求比一个数多百分之几的数是多少的问题的解决方法。
教具:
一、回顾旧知,复习铺垫
(1)、口算3/4×
4
2/3÷
2/3
1+12%
(2)、20的3/5是多少?
30的70%是多少?
二、师生互动,探究新知
(一)、自主提问,生成问题。
1、教师口述信息:
学校图书室原有图书1400册,今年图书册数增加了12%。
2、抽生复述刚才听到的信息。
3、学生提出相关百分数问题,引入例题。
预设问题:
①、增加了多少册?
②、今年有多少册图书?
③今年的图书册数是原来的百分之几?
(二)、解决问题,引出例题。
1、出示例4:
师述:
用刚才的信息加上同学们提出的第二个问题,就是我们今天要学习的例4。
例4:
现在有多少册图书?
2、分析数量关系,确定解决问题的方法。
(1)、重点指导分析“今年图书册数增加了12%”。
引导:
思考“今年图书册数增加了12%”是什么意思?
在那见过类似的问题?
如果把12%换成一个分数你会解决吗?
(我们可以借助解决分数应用题的方法来解决百分数应用题。
)等量关系是什么?
(今年图书册数=原来图书册数+增加的册数)单位“1”是那个量?
我们先求什么?
(即问题①)求增加了多少册就是求什么?
怎么列式?
(1400×
12%)(教师指导一个数乘百分数的计算方法。
)
(2)、根据等量关系式列式解答,强调过程的完整性。
(抽生板演)
(3)、抽生说说算式的意义,回顾解题思路,说说解题的关键点是什么?
(找单位“1”和等量关系。
(三)、一题多解,拓展思维。
思考:
解决这类问题还有什么方法?
(1)、提示:
借助刚才提出的问题③思考。
(2)、学生独立思考列式。
1400×
(1+12%)
(3)、抽生说思路。
(4)、借助线段图分析“今年的图书册数是原来的百分之几?
”
(5)、找准解决问题关键点。
(6)、列式解答。
(四)、分析特征,自主归类。
1、师生一起归类,这类题属于“求比一个数多(少)百分之几的数是多少”的问题。
2、回顾这类题的解题思路与方法。
三、联系实际,对比提升。
1、改编例4并解答。
学校图书室现在有图书1568册,今年图书册数增加了12%。
今年图书有多少册?
(1)、学生自主思考解答。
(2)、小组合作解答。
(3)、全班交流。
2、分析这道题与例题有什么相同点和不同点。
3、比较今天学的这类题与分数应用题有什么相同点和不同点。
课件出示例5
学生试做,师板书:
1×
(1-20%)×
(1+20%)=0.96
(1-0.96)÷
1=0.04=4%。
比30米多60%是(
)米。
40千克比(
)少20%。
总结:
这节课你收获了什么?
“求比一个数多百分之几的数是多少”的应用题
例41400×
(1+12%)
=1400×
112%
=1568(册)
例51×
1=0.04=4%
“求比一个数多百分之几的数是多少”的解决问题
(二)
人教版小学数学六年级上册P90例5内容
1、理解与“求比一个数多(或少)几分之几的数是多少”的解决问题的联系。
2、通过学生自主解决问题,掌握“求比一个数多(少)百分之几的数是多少”的问题的基本方法。
3、培养学生迁移类推,分析解决问题的能力。
灵活运用所学的知识解决求比一个数多(少)百分之几的数是多少的问题。
教学例5。
某种商品先降价然后再涨价,第一次降价和第二次涨价的幅度相同,商品的价格会不会变化?
如果变化,是变高了还是变低了呢?
现在我们就来研究这个问题。
出示例5:
某种商品4月的价格比3月降了20%,5月的价格比4月又涨了20%,5月的价格和3月比是涨了还是降了?
变化幅度是多少?
(1)我们可以得到哪些信息?
这个问题有没有办法解决,以小组为单位讨论,汇报讨论结果。
方法一:
假设此商品3月的价格是100元。
100×
(1-20%)=100×
0.8=80(元)
80×
(1+20%)=80×
1.2=96(元)
96÷
100=0.96=96%
假设此商品3月的价格是1。
1×
(1-20%)×
(1-0.96)÷
发现5月的价格比3月降了4%,是3月的96%。
(2)一件未知价格的商品有涨有降时,我们可以假设此商品的价格为“1”或100元,便于理解和计算。
三、闯关练习,深化新知
1.教科书第91页做一做第1--3题。
2.教科书练习十九(第92页)的第六题。
3.强化练习:
(1)小刚去年10岁,身高100厘米,经过运动“增高”,现在终于增高了5%,小刚现在有多高?
(2)小刚爸爸想买一台洗衣机,但身上只带了880元,你能帮他们算一算钱够不够买一台洗衣机?
这节课你都学到了什么呢?
“求比一个数多百分之几的数是多少”
(二)的解决问题
方法二:
0.8=80(元)1×
1.2=96(元)(1-0.96)÷
教后
“求比一个数多百分之几的数是多少”的练习
教材第92—93页练习十九第2—14题
1、让学生进一步理解“求一个数比另一个数多(少)百分之几”的方法,运用比较和分析的能力,提高数学素养。
2、让学生进一步理解“求比一个数多(少)百分之几的数是多少”的应用题的数量关系和解题方法,并能正确地解答这类应用题。
3、提高学生类推、分析、解决问题的能力,培养学生多角度地思考问题。
找准单位“1”,掌握求比一个数多百分之几的数是多少的问题和“求比一个数多(少)百分之几的数是多少”的解决方法。
掌握“一个数比另一个数多(少)百分之几”的计算方法与“求比一个数多(少)百分之几的数是多少”的计算方法,并能熟练地运用。
一、基本练习(只列式不计算)
(1)10万元的5%是多少?
(2)一个数的80%是100,求这个数。
(3)500减少20%后是多少?
(4)1000元增加2%后是多少?
(5)100比某数多10%,求某数?
二、知识梳理
1、某校男生人数比女生少10%。
①谁是单位“1”。
②男生人数是女生人数的百分之几?
③已知女生有500人,求男生有多少人?
④已知男生有450人,求女生有多少人?
2、把③、④两题进行比较,然后小结。
3、完成教科书练习十九第4题。
提问:
这一道题是谁与谁比呢?
怎样列式?
(4350-2700)÷
4350×
=1650÷
=37.9%
4350-2700表示什么?
为什么除以4350?
4、完成教科书练习十九的第5题。
40%是把谁看作单位“1”?
这道题的单位“1”是已知还是未知?
(1)方程解:
设全文共有ⅹ个字。
40%X=1600
X=1600÷
40%
X=4000
4000-1600=2400(字)
(2)算术解:
1600÷
40%=4000(字)
4000-1600=2400(字)
5、出示第8题。
学生读题,理解题意。
分析:
该题是“求比一个数多百分之几的数是多少”的应用题。
6、出示第11题。
该题中单位“1”的量发生了变化。
要求8月初鸡蛋的价格应将什么看作单位“1”,求9月初鸡蛋的价格又将什么看作单位“1”。
指名学生板演,其余学生练习,师生共同订正。
完成课内作业:
完成教科书练习十九的第2、3、7、9、12题。
今天的练习课中,你最大的收获是什么?
作业设计:
完成教科书练习二十二的第1、6、10、13、14题。
“求比一个数多百分之几的数是多少”的练习
(4350-2700)÷
=37.9%
整理和习复
复习百分数的意义和写
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第六 单元 百分数 教案