高中数学选修212223知识总结.docx
- 文档编号:1654343
- 上传时间:2022-10-23
- 格式:DOCX
- 页数:17
- 大小:263.92KB
高中数学选修212223知识总结.docx
《高中数学选修212223知识总结.docx》由会员分享,可在线阅读,更多相关《高中数学选修212223知识总结.docx(17页珍藏版)》请在冰豆网上搜索。
高中数学选修212223知识总结
选修2-1
第一章常用逻辑用语
1.命题及其关系
1四种命题相互间关系:
2逆否命题同真同假
2.充分条件与必要条件
是的充要条件:
是的充分不必要条件:
是的必要不充分条件:
是的既充分不必要条件:
3.逻辑联结词“或”“且”“非”
4.全称量词与存在量词注意命题的否定形式(联系反证法的反设),主要是量词的变化
椭圆
双曲线
抛物线
定义
与两个定点的距离和等于常数
与两个定点的距离差的绝对值等于常数
与一个定点和一条定直线的距离相等
标准方程
图形
顶点坐标
(±a,0),(0,±b)
(±a,0)
(0,0)
对称轴
x轴,长轴长2a
y轴,短轴长2b
x轴,实轴长2a
y轴,虚轴长2b
x轴
焦点坐标
(±,0)
(±,0)
(,0)
离心率
e=1
准线
渐近线
第二章圆锥曲线与方程
1.三种圆锥曲线的性质(以焦点在轴为例)
2.“回归定义”是一种重要的解题策略。
如:
(1)在求轨迹时,若所求的轨迹符合某种圆锥曲线的定义,则根据圆锥曲线的方程,写出所求的轨迹方程;
(2)涉及椭圆、双曲线上的点与两个焦点构成的焦点三角形问题时,常用定义结合解三角形(一般是余弦定理)的知识来解决;(3)在求有关抛物线的最值问题时,常利用定义把到焦点的距离转化为到准线的距离,结合几何图形利用几何意义去解决。
3.直线与圆锥曲线的位置关系
(1)有关直线与圆锥曲线的公共点的个数问题,直线与圆锥曲线的位置关系有三种情况:
相交、相切、相离.联立直线与圆锥曲线方程,经过消元得到一个一元二次方程(注意在和双曲线和抛物线方程联立时二次项系数是否为0),直线和圆锥曲线相交、相切、相离的充分必要条件分别是、、.
应注意数形结合(例如双曲线中,利用直线斜率与渐近线的斜率之间的关系考查直线与双曲线的位置关系)
常见方法:
①联立直线与圆锥曲线方程,利用韦达定理等;
②点差法
(主要适用中点问题,设而不求:
)
(2)有关弦长问题,应注意运用弦长公式及韦达定理来解决;(注意斜率是否存在)
①直线具有斜率,两个交点坐标分别为
②直线斜率不存在,则.
(3)有关对称垂直问题,要注意运用斜率关系及韦达定理,设而不求,简化运算。
考查三个方面:
A存在性(相交);B中点;C垂直()
注:
1.圆锥曲线,一要重视定义,这是学好圆锥曲线最重要的思想方法,二要数形结合,既熟练掌握方程组理论,又关注图形的几何性质,以简化运算。
2.当涉及到弦的中点时,通常有两种处理方法:
一是韦达定理;二是点差法.
3.圆锥曲线中参数取值范围问题通常从两个途径思考:
一是建立函数,用求值域的方法求范围;二是建立不等式,通过解不等式求范围。
4.注意向量在解析几何中的应用(数量积解决垂直、距离、夹角等)
(4)求曲线轨迹常见做法:
定义法、直接法、代入法(利用动点与已知轨迹上动点之间的关系)、点差法(适用求弦中点轨迹)、参数法等。
第三章空间向量与立体几何
1.空间向量及其运算
1,
2共线向量定理:
3共面向量定理:
;
四点共面
4空间向量基本定理(不共面的三个向量构成一组基底,任意两个向量都共面)
2.平行:
(直线的方向向量,平面的法向量)(是a,b的方向向量,是平面的法向量)
线线平行:
线面平行:
面面平行:
3.夹角问题
线线角(注意异面直线夹角范围)
线面角
二面角(一般步骤①求平面的法向量;②计算法向量夹角;③回答二面角(空间想象二面角为锐角还是钝角或借助于法向量的方向),只需说明二面角大小,无需说明理由))
4.距离问题(一般是求点面距离,线面距离,面面距离转化为点到面的距离)
P到平面的距离(其中是平面内任一点,为平面的法向量)
选修2-2
第一章导数及其应用
1.平均变化率
2.导数(或瞬时变化率)
导函数(导数):
3.导数的几何意义:
函数y=f(x)在点x0处的导数(x0)就是曲线y=f(x)在点(x0,f(x0))处的切线的斜率,即k=(x0).
应用:
求切线方程,分清所给点是否为切点
4.导数的运算:
(1)几种常见函数的导数:
①(C)′=0(C为常数);②()′=(x>0,);③(sinx)′=cosx;
④(cosx)′=-sinx;⑤(ex)′=ex;⑥(ax)′=axlna(a>0,且a≠1);
⑦;⑧(a>0,且a≠1).
(2)导数的运算法则:
①[u(x)±v(x)]′=u′(x)±v′(x);②[u(x)v(x)]′=u′(x)v(x)+u(x)v′(x);
③.
5.设函数在点处有导数,函数在点的对应点处有导数,则复合函数在点处也有导数,且
6.定积分的概念,几何意义,区边图形的面积的积分形式表示,注意确定上方函数,下方函数的选取,以及区间的分割.微积分基本定理.
物理上的应用:
汽车行驶路程、位移;变力做功问题。
7.函数的单调性
(1)设函数在某个区间(a,b)可导,如果,则在此区间上为增函数;如果,则在此区间上为减函数;
(2)如果在某区间内恒有,则为常数。
★反之,若已知可导函数在某个区间上单调递增,则,且不恒为零;可导函数在某个区间上单调递减,则,且不恒为零.
求单调性的步骤:
1确定函数的定义域(不可或缺,否则易致错);
2解不等式;
3确定并指出函数的单调区间(区间形式,不要写范围形式),区间之间用“,”★隔开,不能用“”连结。
8.极值与最值
对于可导函数,在处取得极值,则.
最值定理:
连续函数在闭区间上一定有最大最小值.
若在开区间有唯一的极值点,则是最值点。
求极值步骤:
1确定函数的定义域(不可或缺,否则易致错);
2解不等式;
3检验的根的两侧的符号(一般通过列表)
求最值时,步骤在求极值的基础上,将各极值与端点处的函数值进行比较大小,切忌直接说某某就是最大或者最小。
9.恒成立问题“”和“”,
注意参数的取值中“=”能否取到。
例2设函数在处取得极值。
(1)求的值;
(2)若对于任意的,都有成立,求c的取值范围。
(答:
(1)a=-3,b=4;
(2))
第二章推理与证明
1.分清概念:
合情推理与演绎推理
2.综合法分析法的步骤规范
3.反证法步骤:
①提出反设;②推出矛盾;③肯定结论
4.数学归纳法步骤规范:
(1)归纳奠基;
(2)递推步骤
例2已知
选修2-3
第一章计数原理
1、分类加法计数原理:
做一件事情,完成它有N类办法,在第一类办法中有M1种不同的方法,在第二类办法中有M2种不同的方法,……,在第N类办法中有MN种不同的方法,那么完成这件事情共有M1+M2+……+MN种不同的方法。
2、分步乘法计数原理:
做一件事,完成它需要分成N个步骤,做第一步有m1种不同的方法,做第二步有M2不同的方法,……,做第N步有MN不同的方法.那么完成这件事共有N=M1M2...MN种不同的方法。
3、排列:
从n个不同的元素中任取m(m≤n)个元素,按照一定顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列
4、排列数:
从n个不同元素中取出m(m≤n)个元素排成一列,称为从n个不同元素中取出m个元素的一个排列.从n个不同元素中取出m个元素的一个排列数,用符号表示。
5、公式
6、组合:
从n个不同的元素中任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合。
7、公式:
8、二项式定理:
9、二项式通项公式
第二章随机变量及其分布
知识点:
1、随机变量:
如果随机试验可能出现的结果可以用一个变量X来表示,并且X是随着试验的结果的不同而变化,那么这样的变量叫做随机变量.随机变量常用大写字母X、Y等或希腊字母ξ、η等表示。
2、离散型随机变量:
在上面的射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.
3、离散型随机变量的分布列:
一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn
X取每一个值xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X的概率分布,简称分布列
4、分布列性质①pi≥0,i=1,2,… ;②p1+p2+…+pn=1.
5、二项分布:
如果随机变量X的分布列为:
其中0
6、超几何分布:
一般地,设总数为N件的两类物品,其中一类有M件,从所有物品中任取n(n≤N)件,这n件中所含这类物品件数X是一个离散型随机变量,
则它取值为k时的概率为,
7、条件概率:
对任意事件A和事件B,在已知事件A发生的条件下事件B发生的概率,叫做条件概率.记作P(B|A),读作A发生的条件下B的概率
8、公式:
9、相互独立事件:
事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件叫做相互独立事件。
10、n次独立重复事件:
在同等条件下进行的,各次之间相互独立的一种试验
11、二项分布:
设在n次独立重复试验中某个事件A发生的次数,A发生次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是p,事件A不发生的概率为q=1-p,那么在n次独立重复试验中(其中k=0,1,……,n,q=1-p)
于是可得随机变量ξ的概率分布如下:
这样的随机变量ξ服从二项分布,记作ξ~B(n,p),其中n,p为参数
12、数学期望:
一般地,若离散型随机变量ξ的概率分布为
则称Eξ=x1p1+x2p2+…+xnpn+…为ξ的数学期望或平均数、均值,数学期望又简称为期望.是离散型随机变量。
13、两点分布数学期望:
E(X)=np
14、超几何分布数学期望:
E(X)=.
15、方差:
D(ξ)=(x1-Eξ)2·P1+(x2-Eξ)2·P2+......+(xn-Eξ)2·Pn叫随机变量ξ的均方差,简称方差。
17.正态分布:
若概率密度曲线就是或近似地是函数
的图像,其中解析式中的实数是参数,分别表示总体的平均数与标准差.
则其分布叫正态分布,f(x)的图象称为正态曲线。
18.基本性质:
①曲线在x轴的上方,与x轴不相交.
②曲线关于直线x=对称,且在x=时位于最高点.
③当时,曲线上升;当时,曲线下降.并且当曲线向左、右两边无限延伸时,以x轴为渐近线,向它无限靠近.
④当一定时,曲线的形状由确定.越大,曲线越“矮胖”,表示总体的分布越分散;越小,曲线越“瘦高”,表示总体的分布越集中.
⑤当σ相同时,正态分布曲线的位置由期望值μ来决定.
⑥正态曲线下的总面积等于1.
19.3原则:
从上表看到,正态总体在以外取值的概率只有4.6%,在以外取值的概率只有0.3%由于这些概率很小,通常称这些情况发生为小概率事件.也就是说,通常认为这些情况在一次试验中几乎是不可能发生的.
第三章统计案例
1、独立性检验
假设有两个分类变量X和Y,它们的值域分另为{x1,x2}和{y1,y2},其样本频数列联表为:
y1
y2
总计
x1
a
b
a+b
x2
c
d
c+d
总计
a+c
b+d
a+b+c+d
若要推断的论述为H1:
“X与Y有关系”,可以利用独立性检验来考察两个变量是否有关系,并且能较精确地给出这种判断的可靠程度。
具体的做法是,由表
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 选修 212223 知识 总结