初中数学活动课情境创设的实践与思考Word格式文档下载.docx
- 文档编号:16458084
- 上传时间:2022-11-23
- 格式:DOCX
- 页数:14
- 大小:50.81KB
初中数学活动课情境创设的实践与思考Word格式文档下载.docx
《初中数学活动课情境创设的实践与思考Word格式文档下载.docx》由会员分享,可在线阅读,更多相关《初中数学活动课情境创设的实践与思考Word格式文档下载.docx(14页珍藏版)》请在冰豆网上搜索。
心理学告诉我们,兴趣是一种情绪激发状态,有了兴趣可使人的脑细胞运动加快、神经紧张、精力集中、思维敏捷,感知力、理解力和记忆力都处于最佳状态。
我们在数学教学过程中,创设必要的问题情境,可以极大地激发学生的学习兴趣,提高课堂教学效果。
实验证明,学生对某学科有兴趣,符合他由活动动机产生的认识倾向,就能激发起学习的积极性,有效的提高学习质量,形成持续性的学习动力,真正能起到诱导创新的好效果。
2、数学情境创设有利于学生的认知结构的发展
在数学教学中,教师为学生提供概念、定理的实际背景,设计定理、公式的发现过程,让学生的思维能够经历一个从模糊到清晰,从具体到抽象,从直觉到逻辑的过程,再由直观、粗糙向严格、精确的追求过程中,使学生体验数学发展的过程,领悟数学概念、定理的根本思想,掌握定理证明过程的来龙去脉,从而使学生的认知结构获得良好的发展。
3、数学情境创设有利于发展学生的思维
数学是思维的体操。
思维是一种复杂的心理过程,是由人们的认识需要引起的。
鉴于初中生抽象思维能力较弱,在实际情境下进行学习,可以引发学生的联想,引起学生的认知冲突,感到原有知识不够用,造成“认知失调”,从而激起学生疑惑、惊奇、差异的情感,使学生在“愤悱”的状态中产生一种积极探究的愿望,集中注意,积极思维。
4、创设问题情境,有利于培养学生提出问题的能力
问题是数学的灵魂。
著名科学家爱因斯坦指出:
“提出一个问题往往比解决一个问题更重要”。
哈佛大学流传的名言:
“教育的真正目的就是让人不断地提出问题、思索问题。
”在情境学习理论的指导下,数学教育可以将所要传授的知识融于情境中,通过创设有意义的、丰富的、真实的数学情境,为学生提供生动而真实的学习机会,让学生在特定的情境中,通过观察、分析、探究与猜想,从而提出数学问题,探求解决数学问题的方法和策略,培养学生的问题意识,解决问题和应用知识的能力。
5、数学情境创设有利于突出学生的主体地位和教师的主导作用
从数学教学的需要出发创设的问题情境,可激发学生的学习动机,建立平等、互相尊重的师生关系,教师能充分发挥“导”的作用,让学生主动参与、积极思考、亲自实践,充分发挥学生主体作用;
师生在情境中、在学习行为中、在合作交流中、在互动中、在反思中,共同建构知识的意义,促进学生知识、能力和情感的和谐、健康发展。
二、情境创设在初中数学教学实践中存在的一些问题
倾向一:
有的教师对新课程理念下创设问题情境的目的存在认识上的不足
主要体现在:
1、情境创设的浅表性
一些教师只是机械的套用情境创设这一环节,认为只要上课时播放一段动画,出示一张挂图就是创设情境了,敷衍了事。
2、情境创设的被动性
有些教师觉得情境创设浪费课堂教学时间,怕完不成教学任务,能不用就不用。
倾向二:
过分追求情境创设的形式,淡化了数学的味道,偏离了数学的实质
1、追求热闹,无实效
有的教师过于追求教学的情境化,或是为情境而情境,与教学内容无关的背景太多、太杂,不利于学生的观察、感知、抽象和概括,课堂热闹有余、思维不足。
2、形同虚设,无价值
有的教师采用过多的非数学信息干扰和弱化了数学问题的呈现,内容堆积,过程太长,反而使学生抓不住主题,使情境创设失去了它应有的作用。
3、盲目无序,少理性
有的教师甚至认为数学课上活动越多越好,教具、实物、多媒体展示、操作频繁,学生的学习处于一种浮燥的状态,教师缺乏准确的定位,因而把数学教学引入了歧途,热闹浮躁的问题情境导致课堂远离了“理性思考”的轨道。
列举的这些现象绝非个别现象,可以说在数学课堂中还有着很大的普遍性,而这样的现状却直接影响着我们学生对数学知识的积累、数学能力的培养、数学素养的全面提高。
造成以上种种现象的原因在于对教材的钻研不够,对所教内容在知识体系中的地位把握不足,对情境创设的目的认识不清。
忽视了情境与知识内容之间的和谐性、实效性的问题。
数学教学设计的核心是如何体现“数学的本质”、“精中求简”、“返朴归真”,呈现数学特有的“教学形态”,使得学生高效率、高质量地领会和体验数学的价值和魅力。
在情境创设中,不能淡化“数学的味道”。
为追寻形式上的“繁华艳丽”,而抛弃情境中的“数学实质”,无疑是一种“买椟还珠”的行为。
三、探讨在数学活动课中创设合理情境的原则
(一)目的性原则
教学情境的创设应与教学目标保持高度的一致,教学情境必须从课本内容出发,恰当地组织素材,切不可脱离学生的实际情况。
提供给学生的问题情境应是明确具体,重点突出的,而不应是宽泛复杂的。
情境的设置要与学生已有的认知发展水平相适应,只有当创设的数学情境进入学生的“最近发展区”,使学生跳一跳能够“摘到桃子”,学生才能在己有的认知发展水平基础上,通过教师的适当引导,从中发现问题、提出问题,形成问题意识,从而进一步提高自己的探究意识和创新意识。
(二)启发性原则
作为数学情境的材料或活动,必须富有启发性,能激发学生的元认知,引发学生广泛的联想和想象。
教育家孔子在谈到启发式教学时曾有过这样一句著名论述:
“不愤不启,不悱不发”即当学生处于“愤”和“悱”的状态时,激起学生的认知冲突,形成认知结构上的“不平衡”,造成学生心理上的悬念,教师进行启发、诱导、传授知识,才会收到最佳效果。
(三)发展性原则
素质教育旨在促进全体学生的全面发展。
这里的全面发展,不仅指掌握学科知识技能,更指学习能力的发展,品格、意志、个性、情感的发展。
学生是学习的主体,也是教学的主体,创设问题情境的目的就是促进学生的主动发展。
(四)层次性原则
在学生群体活动中,学生的学习水平、个性特征、兴趣爱好都有很大的差异,表现出不同的活动状态。
这样,课堂教学中,任务的实施应该考虑多层次、有梯度的进行,让所有学生都能进步。
教师在创设问题情境时,应尽可能设计一组有层次、有梯度的问题,考虑好问题的衔接和过渡,用组合、铺垫或设台阶等方法来提高问题的整体效益。
并且及时引导学生把问题讨论的结果进行有机整合,形成系统的认知结构。
(五)探究性原则
情境材料或活动应富有探究性,在内容与问题信息量上应有较大的发展空间,利于学生探究思考,有利于激发学生的问题意识与探究动机,从而丰富学生运用数学来解决实际问题的经验和策略。
(六)应用性原则
创设数学问题情境时,可把教学的具体内容与学生熟悉的生活背景结合起来,从具体的问题到抽象的概念,得到抽象化的知识后再把它们应有到新的现实情境中去,从而培养学生应用数学的意识,提高解决问题的能力。
四、数学活动课情境创设的实施策略
(一)利用新旧知识间的内在联系创设问题情境
从学生原有知识入手创设情境,有利于新旧知识间的衔接,不仅可使知识由旧到新之间的过渡十分自然,而且也为学生探索新知识作了铺垫。
此法适用于知识间内在联系紧密的内容。
【案例】在《相似三角形的判定》一节课的教学时,可以与全等三角形的判定进行类比。
全等三角形
相似三角形
两边夹角对应相等的两个三角形全等
两边对应成比例,夹角相等的两个三角形相似
两角夹边对应相等的两个三角形全等
两角对应相等的两个三角形相似
两角一边对应相等的两个三角形全等
三边对应相等的两个三角形全等
三边对应成比例的两个三角形相似
类比引入既梳理了已有知识,又为新知识的建构搭建了良好的平台,对于内容较多、体系性强的知识尤其使用。
(二)利用数学故事和数学史实创设趣味型问题情境
在数学的发展史上,有大量引人入胜的数学故事和数学史实,如果我们在课堂教学中能恰当地穿插和引用这些材料,抓住学生具有强烈好奇心的这一心理特征,必能充分激发学生的数学学习兴趣,使他们更好、更愉快地完成学习任务。
【案例】在《轴对称》一节课的教学时,可以引入“将军饮马”的故事:
相传两千多年前的古希腊,有一位身经百战的将军向部下提出这样一个问题:
如图,我们在草地甲处(A点)喂饱马后,要到河边(直线L)给马饮水,然后再回到军营乙处(B点),该如何走最近?
他和部下对此问题百思不解。
后来,当时有名的大数学家海伦为他们解决了这一难题,这个问题被称为“将军饮马”问题。
你能回答这个问题吗?
我相信每个同学都有海伦的智慧,请积极思考,并动手,把你认为使得AC+BC的值最小的C点找出来。
有趣的故事,聪明的前人激励了学生。
有的学生通过猜想找到了C点,有的学生联想到了物理中的平面镜成像,也有的束手无策。
对于做对的同学,我让他们展示了自已的成果,并肯定地说:
恭喜你,你有着和海伦一样的智慧。
并通过动画演示直观再现了C点的探求过程,使做对的学生有了成功的体验,也使束手无策的同学有了直观体验,获得了情感上的认同。
【案例】在《有理数的乘方》一节课的教学时,可以引入“国王的重赏”的故事:
相传,古印度的舍罕国王十分喜欢国际象棋,他决定重赏国际象棋发明人——宰相达依尔,许诺可以满足达依尔提出的任何要求。
达依尔指着舍罕国王面前的棋盘说:
“陛下,请您按棋盘上的格子赏赐我一些麦子吧:
在第1格放1粒,第2格放2粒,第3格放4粒,……以后每一格放的麦粒数都是前面一格的2倍,直至放满64格为止。
”
舍罕国王听了达依尔这个“不高”的要求,想都没想就满口答应下来:
“你会如愿以偿的。
”并为自己对这样一件奇妙发明的赏赐的许诺不致破费太多而窃喜。
接着,舍罕国王下令把一袋麦子扛到宝座前。
计数麦粒的工作开始了,第一格内放1粒,第二格内放2粒,第三格内放2粒,……还没有到第二十格,一袋麦子已经空了。
一袋又一袋的麦子被扛到舍罕国王的面前。
但是,麦粒数一格接一格飞快增长着,舍罕国王很快意识到,即便拿出全国乃至全世界的粮食,也兑现不了他对国际象棋发明人达依尔的许诺。
算算看,舍罕国王应给国际象棋发明人达依尔多少粒麦子?
原来,所需麦粒总数1+2+22+23+24+……+263=264-1=18446744073709551615。
如果以20000粒为1千克计算,那么这么多麦子的重量约是18446744073709551615÷
20000=922337203685477.58075(千克)
这些麦子究竟有多少?
按目前的平均产量计算,这竟然是全世界生产两千多年的全部小麦!
故事是学生最喜爱的文学样式之一,将故事引进数学课堂,不仅强烈的激发学生的学习兴趣,而且体会到数学问题的源远流长。
【案例】在《随机事件》一节课的教学时,可以通过热播的动画片《大英雄狄青》,给学生讲解这位宋朝名将抛掷百枚钱币鼓士气,从而顺利征讨侬智高,大获全胜,平定了邕州的故事,接着又设问:
听完故事是不是还为狄青捏着把汗?
狄青真的有把握100枚铜币全朝上吗?
这个情境的创设及内容都比较新颖。
学生听完后,会产生浓厚兴趣,急于释疑。
巧妙的设问恰好找准了学生的知识生长点。
这样很自然就把学生引入到生机盎然的学习情境中去。
【案例】在《反证法》一节课的教学时,可以引入“生死阄”的故事:
古代有一位贤臣被一奸臣陷害,被判了死罪。
国王念其有功,采用了用抓阄来最后判决的办法:
用两张纸条,一张写有“死”字,另一张写有“生”字,处决前由这位贤臣自己抽取.抽到“生”字便可免除死罪,抽到“死”字则斩立决。
而奸臣歹毒无比,命做阄的人把两张纸条上都写上“死”字,这样,贤臣无论抽取哪个阄都得死。
这一情况恰巧被贤臣的一位朋友知道了,并告诉了贤臣。
贤臣听后略加思索,便高兴地说:
“我有救了!
”当他在刑场上抽取纸条时,只见他抽出一张纸条谁也不让看,就吞到肚子里。
监斩官只好看剩下的纸条上的字来决定他的生死。
剩下的无疑是“死”字,于是这位贤臣免于一死.
故事中,国王只知道一张是“生”阄,一张是“死”阄。
假设贤臣吞下是“死”字,则剩下的应该是“生”字,而剩下的却是“死”字。
因此,假设不成立,所以贤臣吞下的是“生”字.
我们认为,喜欢听故事是人们的共同爱好。
对学生而言,他们更喜欢。
创设故事情境,导入新课,能使数学课堂充满情趣,使学生感到新奇愉快,从而达到学习活动的最佳状态。
这节课的情境创设随着情境慢慢深入,在教学过程中又创设情境,并不失时机的渗透强化随机概念,可谓边学边用;
使学生始终处于一种兴奋状态,从而激发学生学习新知识的强烈动机,达到了有效学习的目的。
在数学发展的历史中,有许多脍炙人口的数学故事和数学家轶事。
在创设教学情境时,可充分挖掘数学史料,利用这些丰富的文化资源创设教学情境。
这不仅能激发学生的求知欲望,还能使学生从中学习数学知识,领略数学家的人格魅力,接受思想教育。
例如欧拉、高斯、笛卡儿、牛顿及我国数学家祖冲之、杨辉、华罗庚、陈景润等都有很多动人故事可以用来创设教学情境。
如涉及到无理数时,向学生介绍希腊毕达哥拉斯学派的成员希伯索斯因发现了无理数而被扔进大海;
涉及勾股定理时,可介绍毕达哥拉斯曾因此发现而欣喜若狂,宰了一百头牛来庆贺等,学生听了即生情感。
又如在讲“平面直角坐标系”时,可利用历史上笛卡儿午休时梦见到蜘蛛在窗上爬动,受其启发发明解析几何的故事来创设教学情境。
(三)利用数学与生活联系来创设应用型问题情境
从实际生活引入新知识,有助于学生体会数学知识的应用价值,为学生从数学的角度去分析问题、解决问题提供示范。
教师可引导学用自己的眼光观察生活中的方方面面,发现存在于生活中的数学。
例如:
金融问题:
储蓄的学问、怎样存钱本息多、买保险和存款哪一个更合算、定期存款与国债的比较。
消费购物:
打折问题、打折与返券促销方式的比较。
电信、网络:
全球通与神州行哪个合算、上网包月卡与储值卡的比较。
交通:
出租车计价问题、怎样出行省时省钱。
最佳方案问题:
花坛设计,房屋的布局和装修,旅游租车、购票。
其他:
火柴盒的包装问题,为什么蜜蜂会选择“正六边形”作为它们储藏蜂蜜的仓库截面的基本形状?
为什么校园里的地砖有正三角形,正方形、正六边形,而没有正五边形?
等等。
如果教师能够引用这些例子,使学生体会到这些问题只有用数学知识才能解决,说明数学应用之广泛,感受到我们的周围无处不存在数学,才能激发学生学习数学的热情。
要使学生真正明确数学知识的广泛应用性,不能光靠教师说,要利用各种方式使学生获得经验。
【案例】在《统计的意义》一节课的教学时,可以先提出一个问题:
想知道一个袋子里有多少个乒乓球,我们数一下就解决了,可是想知道一个池塘里有多少条鱼,又该怎么办呢?
一个声音马上传来:
把鱼全部捞出来。
另一个声音也传来:
我们只要测量池塘的面积,然后截取池塘的一小部分,比如十分之一,数一下鱼的条数,就可以知道整个池塘的鱼的条数。
又一个声音也传来:
我们可以先捞一些鱼上来,把这些鱼都做上标记放回池塘,等过一下,我们再捞一次,数一下捞上来一共有几条,有标记的有几条,我们就可以估计出池塘里鱼的条数了。
学生在有趣的、现实的问题情境中,对数学有了更加浓厚的好奇心和求知欲,对以上的几种方案是否可行充满了质疑,他们的情绪完全被调到我要学的状态。
他们迫切想知道老师的解答。
兴趣是最好的老师。
把生活中的数学引入课堂,难易适中,贴近学生的认知水平,极大地激发了学生参与的欲望。
就正如苏霍姆林斯基说:
“在人的心灵深处,都有一种根深蒂固的需要,这就是希望自己是一个发现者、研究者、探索者”。
“给学生一个问题,让他们自己去找答案”。
学生五花八门的答案也令教师汉颜,有的联系到已有的经验(把鱼捞出来),有的应用了数学的方法(截取池塘的一小部分),有的把问题与科学联系在一起(用声波),教育的艺术不在于传授知识,而在于唤醒、激发、鼓舞。
【案例】在《代数式》一节课的教学时,可以引入数学魔术“猜出你的手机号码”:
魔术效果:
请按照下列步骤操作:
1.把你的手机号码的前七位数乘以80后减去4;
2.再乘以250;
3.连续两次加上手机号码的后四位数。
根据计算结果,魔术表演者就能算出你的手机号码。
魔术揭秘:
魔术表演者将你的计算结果加上1000后除以2,就是你的手机号码。
设你的手机号码的前7位数为x,后4位数为y,则有
(x×
80-4)×
250+y×
2
=20000x+2y-1000。
于是(20000x+2y-1000+1000)÷
2=10000x+y,就是你的手机号码。
【案例】在《黄金分割》一节课的教学时,可以引入数学魔术“猜出第11个方格中的数”:
1.观众在一张纸上并排画出11个小方格;
2.在最左边的两个方格中分别随意填入一个1~20的整数;
3.从第3个方格开始,在每个方格中填入前两个方格中的数之和,一直填到第10个方格。
现在,只要这位观众报出第10个方格中的数,魔术表演者借助计算器,就能猜出第11个方格中的数。
魔术表演者只要把第10个数除以0.618,得到的结果四舍五入取整数就是第11个数了。
不妨假设观众在最左边两个方格中填入的两个数分别为a和b,那么,这11个方格中的11个数依次为:
A,b,a+b,a+2b,2a+3b,3a+5b,5a+8b,8a+13b,13a+21b,21a+34b,34a+55b
现在我们只需要说明,21a+34b除以34a+55b的结果非常接近0.618即可。
让我们来考虑一个貌似与此无关的生活小常识——盐水调配:
两杯浓度不同的盐水混合在一起,调配出来的盐水浓度一定介于原来两杯盐水的浓度之间。
换句话说,如果其中一杯盐水的浓度是m/n,另一杯盐水的浓度是p/q,那么(m+p)/(n+q)一定介于m/n和p/q之间。
因此,(21a+34b)/(34a+55b)就一定介于21a/34a和34b/55b之间。
而21a/34a=21/34=0.617647……≈0.6176,34b/55b=34/55=0.618181……≈0.6182,可见不论a和b是多少,(21a+34b)/(34a+55b)都被夹在了0.6176和0.6182之间。
如果a和b都是1~20之间的整数,那么用21a+34b除以0.618的结果(四舍五入取整数)来推测34a+55b是绝对可靠的。
这里,0.618正是神秘的黄金分割数
的近似值;
而上表中出现的系数序列1,1,2,3,5,8,13,21,34,55,……正是所谓的斐波那契数列,当n趋近于无穷大时,数列Fn/Fn+1的极限等于
。
(四)利用学生的实践活动创设活动应用型问题情境.
初中阶段的学生正处于智力成长的临界期,动手操作能促进大脑发育和思维发展,也就是使学生变得越来越聪明,只要让学生亲自动手操作一下,先从中得到感性认识,进而不断地比较、分析、概括,上升为理性认识,再利用自己的语言正确表达,学生就会有所体验,有所收获。
在“做数学”中学数学,获得数学学习的体验,体味到数学的无穷魅力,以此来强化学习成功所带来的快乐。
【案例】在《测量旗杆的高度》一节课的教学时,可以这样创设情境:
同学们,每周一清晨,学校的全体师生都要举行升旗仪式。
可是我们经常发现,在国歌声中,旗手升旗的速度有快有慢,很难做到与音乐的节奏同步。
那么怎么解决这个问题呢?
我们学校准备投资换成电动旗杆。
由于国歌演奏时间是固定的,总共43秒钟,那么只要测出旗杆的高度,计算速度的问题就不难解决了。
今天我们就来研究一下怎样测旗杆的高。
怎样利用相似三角形解直角三角形、或投影的有关知识测量旗杆的高度?
大家先集中讨论方案,再分散实际操作,最后集中总结交流.作业布置下去后,学生汇报测量方法时各小组竟然总结出了七、八种科学合理的测量方法。
最后大家统一认识,去同存异有以下几种主要方法:
(1)利用阳光下的影子;
(2)利用标杆;
(3)利用镜子;
(4)利用测角仪解直角三角形的方法;
等等,由于活动内容与学生的基本背景联系密切,学生热情很高,思维活跃,积极主动,用身边的例子所反映出来的问题,能够激起学生的兴趣和参与意识。
操作活动留给学生的印象是深刻的。
美国华盛顿儿童博物馆有一句醒目的格言“告诉我,我会忘记;
给我看,我会记得;
让我亲做,我才懂得。
”这充分说明了只有学生亲手操作,才是理解知识的捷径。
因此,教师要善于设置鲜明、有趣的实验环境,让学生在教师的指导下,通过亲身体验,掌握实验技能,发展探究能力。
新课程理念告诉我们:
重视知识的形成过程,学生要有充分的从事数学活动的时间和空间,自主探索,亲身经历,合作交流。
这样的活动与学生的现实生活和以往的知识体验有密切关系,在这过程中,学生经历了自主探索,亲身经历,合作交流,经历了数学的思考,经历了从数学角度思考实际问题的过程,这些过程都不是教师的教学所能代替的。
学生自己建构立体图形的分类的效果,也不是授课法所能代替的。
(五)利用学生认知上的冲突创设悬念、探究型问题情境
悬念是指那些悬而未解的问题,但比一般问题更具有魅力。
学生在学习中产生悬念心理具有巨大的潜在动力。
在适当地引入悬念,使学生处于一种“愤”、“徘”的状态,能激起学生对于新知识的渴望和学习的动力,根据情境认知理论,把学生以前学过的知识运用到新情境中去成功地解决问题,实现知识的迁移。
【案例】在《二次函数的图像》一节课的教学时,可以探究通过平移变换,二次函数的解析式变化特点时,在顶点式情况下学生探究得出:
“上加下减常数项,左加右减X”后,教师接着引导:
“在抛物线的解析式是一般式情况下是否也遵循这样的规律呢?
”而通过步步相关的巧妙提问,创设悬念情
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初中 数学 活动 情境 创设 实践 思考