浙江专用版高考数学大一轮复习第十章计数原理101分类加法计数原理与分步乘法计数原理文档格式.docx
- 文档编号:16387706
- 上传时间:2022-11-23
- 格式:DOCX
- 页数:11
- 大小:57.56KB
浙江专用版高考数学大一轮复习第十章计数原理101分类加法计数原理与分步乘法计数原理文档格式.docx
《浙江专用版高考数学大一轮复习第十章计数原理101分类加法计数原理与分步乘法计数原理文档格式.docx》由会员分享,可在线阅读,更多相关《浙江专用版高考数学大一轮复习第十章计数原理101分类加法计数原理与分步乘法计数原理文档格式.docx(11页珍藏版)》请在冰豆网上搜索。
解析 由分步乘法计数原理知,用0,1,…,9十个数字组成三位数(可用重复数字)的个数为9×
10×
10=900,组成没有重复数字的三位数的个数为9×
9×
8=648,则组成有重复数字的三位数的个数为900-648=252.故选B.
2.满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有实数解的有序数对(a,b)的个数为( )
A.14B.13C.12D.10
解析 当a=0时,关于x的方程为2x+b=0,此时有序数对(0,-1),(0,0),(0,1),(0,2)均满足要求;
当a≠0时,Δ=4-4ab≥0,ab≤1,此时满足要求的有序数对为(-1,-1),(-1,0),(-1,1),(-1,2),(1,-1),(1,0),(1,1),(2,-1),(2,0).综上,满足要求的有序数对共有13个,故选B.
3.从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为( )
A.24B.18C.12D.6
解析 分两类情况讨论:
第1类,奇偶奇,个位有3种选择,十位有2种选择,百位有2种选择,共有3×
2×
2=12(个)奇数;
第2类,偶奇奇,个位有3种选择,十位有2种选择,百位有1种选择,共有3×
1=6(个)奇数.根据分类加法计数原理,知共有12+6=18(个)奇数.
4.(教材改编)5位同学报名参加两个课外活动小组,每位同学限报其中一个小组,则不同的报名方法有________种.
答案 32
解析 每位同学都有2种报名方法,因此,可分五步安排5名同学报名,由分步乘法计数原理,知总的报名方法共2×
2=32(种).
题型一 分类加法计数原理的应用
例1 高三一班有学生50人,其中男生30人,女生20人;
高三二班有学生60人,其中男生30人,女生30人;
高三三班有学生55人,其中男生35人,女生20人.
(1)从高三一班或二班或三班中选一名学生任学生会主席,有多少种不同的选法?
(2)从高三一班、二班男生中或从高三三班女生中选一名学生任学生会体育部长,有多少种不同的选法?
解
(1)完成这件事有三类方法:
第一类,从高三一班任选一名学生共有50种选法;
第二类,从高三二班任选一名学生共有60种选法;
第三类,从高三三班任选一名学生共有55种选法.
根据分类加法计数原理,任选一名学生任学生会主席共有50+60+55=165(种)不同的选法.
(2)完成这件事有三类方法:
第一类,从高三一班男生中任选一名共有30种选法;
第二类,从高三二班男生中任选一名共有30种选法;
第三类,从高三三班女生中任选一名共有20种选法.
根据分类加法计数原理,共有30+30+20=80(种)不同的选法.
思维升华 分类标准是运用分类加法计数原理的难点所在,重点在于抓住题目中的关键词或关键元素、关键位置.首先根据题目特点恰当选择一个分类标准;
其次分类时应注意完成这件事情的任何一种方法必须属于某一类.
(2016·
全国丙卷)定义“规范01数列”{an}如下:
{an}共有2m项,其中m项为0,m项为1,且对任意k≤2m,a1,a2,…,ak中0的个数不少于1的个数.若m=4,则不同的“规范01数列”共有( )
A.18个B.16个C.14个D.12个
答案 C
解析 第一位为0,最后一位为1,中间3个0,3个1,3个1在一起时为000111,001110;
只有2个1相邻时,共A
个,其中110100,110010,110001,101100不符合题意;
三个1都不在一起时有C
个,共2+8+4=14(个).
题型二 分步乘法计数原理的应用
例2
(1)(2016·
全国甲卷)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( )
A.24B.18C.12D.9
(2)有六名同学报名参加三个智力项目,每项限报一人,且每人至多参加一项,则共有________种不同的报名方法.
答案
(1)B
(2)120
解析
(1)从E点到F点的最短路径有6种,从F点到G点的最短路径有3种,所以从E点到G点的最短路径为6×
3=18(种),故选B.
(2)每项限报一人,且每人至多参加一项,因此可由项目选人,第一个项目有6种选法,第二个项目有5种选法,第三个项目有4种选法,根据分步乘法计数原理,可得不同的报名方法共有6×
5×
4=120(种).
引申探究
1.本例
(2)中若将条件“每项限报一人,且每人至多参加一项”改为“每人恰好参加一项,每项人数不限”,则有多少种不同的报名方法?
解 每人都可以从这三个比赛项目中选报一项,各有3种不同的报名方法,根据分步乘法计数原理,可得不同的报名方法共有36=729(种).
2.本例
(2)中若将条件“每项限报一人,且每人至多参加一项”改为“每项限报一人,但每人参加的项目不限”,则有多少种不同的报名方法?
解 每人参加的项目不限,因此每一个项目都可以从这六人中选出一人参赛,根据分步乘法计数原理,可得不同的报名方法共有63=216(种).
思维升华
(1)利用分步乘法计数原理解决问题要按事件发生的过程合理分步,即分步是有先后顺序的,并且分步必须满足:
完成一件事的各个步骤是相互依存的,只有各个步骤都完成了,才算完成这件事.
(2)分步必须满足两个条件:
一是步骤互相独立,互不干扰;
二是步与步确保连续,逐步完成.
(1)(教材改编)已知集合M={1,-2,3},N={-4,5,6,-7},从M,N这两个集合中各选一个元素分别作为点的横坐标、纵坐标,则这样的坐标在直角坐标系中可表示第一、第二象限内不同的点的个数是( )
A.12B.8C.6D.4
(2)(2016·
石家庄模拟)五名学生报名参加四项体育比赛,每人限报一项,则不同的报名方法的种数为________.五名学生争夺四项比赛的冠军(冠军不并列),则获得冠军的可能性有________种.
答案
(1)C
(2)45 54
解析
(1)分两步:
第一步先确定横坐标,有3种情况,第二步再确定纵坐标,有2种情况,因此第一、二象限内不同点的个数是3×
2=6个,故选C.
(2)五名学生参加四项体育比赛,每人限报一项,可逐个学生落实,每个学生有4种报名方法,共有45种不同的报名方法.五名学生争夺四项比赛的冠军,可对4个冠军逐一落实,每个冠军有5种获得的可能性,共有54种获得冠军的可能性.
题型三 两个计数原理的综合应用
例3
(1)如图,矩形的对角线把矩形分成A,B,C,D四部分,现用5种不同颜色给四部分涂色,每部分涂1种颜色,要求共边的两部分颜色互异,则共有________种不同的涂色方法.
(2)如果一条直线与一个平面垂直,那么称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是________.
答案
(1)260
(2)36
解析
(1)区域A有5处涂色方法;
区域B有4种涂色方法;
区域C的涂色方法可分2类:
若C与A涂同色,区域D有4种涂色方法;
若C与A涂不同色,此时区域C有3种涂色方法,区域D也有3种涂色方法.所以共有5×
4×
4+5×
3×
3=260(种)涂色方法.
(2)第1类,对于每一条棱,都可以与两个侧面均成“正交线面对”,这样的“正交线面对”有2×
12=24(个);
第2类,对于每一条面对角线,都可以与一个对角面构成“正交线面对”,这样的“正交线面对”有12个.所以正方体中“正交线面对”共有24+12=36(个).
思维升华 利用两个计数原理解决应用问题的一般思路
(1)弄清完成一件事是做什么.
(2)确定是先分类后分步,还是先分步后分类.
(3)弄清分步、分类的标准是什么.
(4)利用两个计数原理求解.
济南质检)如图,用4种不同的颜色对图中5个区域涂色(4种颜色全部使用),要求每个区域涂一种颜色,相邻的区域不能涂相同的颜色,则不同的涂色种数有________.
答案 96
解析 按区域1与3是否同色分类:
(1)区域1与3同色:
先涂区域1与3有4种方法,再涂区域2,4,5(还有3种颜色)有A
种方法.∴区域1与3涂同色,共有4A
=24(种)方法.
(2)区域1与3不同色:
先涂区域1与3有A
种方法,第二步涂区域2有2种涂色方法,第三步涂区域4只有一种方法,第四步涂区域5有3种方法.∴这时共有A
×
1×
3=72(种)方法.
故由分类加法计数原理,不同的涂色种数为24+72=96.
12.利用两个基本原理解决计数问题
典例
(1)把3封信投到4个信箱,所有可能的投法共有( )
A.24种B.4种C.43种D.34种
(2)某人从甲地到乙地,可以乘火车,也可以坐轮船,在这一天的不同时间里,火车有4次,轮船有3次,问此人的走法可有________种.
错解展示
解析
(1)因为每个信箱有三种投信方法,共4个信箱,
所以共有3×
3=34(种)投法.
(2)乘火车有4种方法,坐轮船有3种方法,
共有3×
4=12(种)方法.
答案
(1)D
(2)12
现场纠错
解析
(1)第1封信投到信箱中有4种投法;
第2封信投到信箱中也有4种投法;
第3封信投到信箱中也有4种投法.只要把这3封信投完,就做完了这件事情,由分步乘法计数原理可得共有43种方法.
(2)因为某人从甲地到乙地,乘火车的走法有4种,坐轮船的走法有3种,每一种方法都能从甲地到乙地,根据分类加法计数原理,可得此人的走法共有4+3=7(种).
答案
(1)C
(2)7
纠错心得
(1)应用计数原理解题首先要搞清是分类还是分步.
(2)把握完成一件事情的标准,如典例
(1)没有考虑每封信只能投在一个信箱中,导致错误.
1.(2016·
镇海中学模拟)有4位教师在同一年级的4个班中各教一个班的数学,在数学检测时要求每位教师不能在本班监考,则不同的监考方法有( )
A.8种B.9种
C.10种D.11种
解析 设四位监考教师分别为A,B,C,D,所教班分别为a,b,c,d,假设A监考b,则余下三人监考剩下的三个班,共有3种不同方法,同理A监考c,d时,也分别有3种不同方法,由分类加法计数原理,共有3+3+3=9(种)不同的监考方法.
2.小明有4枚完全相同的硬币,每个硬币都分正反两面.他想把4个硬币摆成一摞,且满足相邻两枚硬币的正面与正面不相对,则不同的摆法有( )
A.4种B.5种C.6种D.9种
解析 记反面为1,正面为2,则正反依次相对有12121212,21212121两种;
有两枚反面相对有21121212,21211212,21212112三种,共5种摆法,故选B.
3.将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,则不同的安排方案共有( )
A.12种B.10种
C.9种D.8种
答案 A
解析 第一步,选派一名教师到甲地,另一名到乙地,共有C
=2(种)选派方法;
第二步,选派两名学生到甲地,另外两名到乙地,有C
=6(种)选派方法.
由分步乘法计数原理,不同的选派方案共有2×
6=12(种).
4.(2015·
四川)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有( )
A.144个B.120个C.96个D.72个
解析 由题意知,首位数字只能是4,5,若万位是5,则有3×
A
=72(个);
若万位是4,则有2×
=48(个),故比40000大的偶数共有72+48=120(个).故选B.
5.将一个四面体ABCD的六条棱上涂上红、黄、白三种颜色,要求共端点的棱不能涂相同颜色,则不同的涂色方案有( )
A.1种B.3种
C.6种D.9种
解析 因为只有三种颜色,又要涂六条棱,所以应该将四面体的对棱涂成相同的颜色.故有3×
1=6(种)涂色方案.
6.将字母a,a,b,b,c,c排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有( )
A.12种B.18种
C.24种D.36种
解析 先排第一列,由于每列的字母互不相同,因此共有A
种不同排法.再排第二列,其中第二列第一行的字母共有2种不同的排法,第二列第二、三行的字母只有一种排法.因此共有A
·
2·
1=12(种)不同的排列方法.
7.(2016·
大连模拟)将数字1,2,3,4填入标号为1,2,3,4的四个方格,每格填一个数,则每个方格的标号与所填数字均不相同的填法有________种.
答案 9
解析 编号为1的方格内填数字2,共有3种不同填法;
编号为1的方格内填数字3,共有3种不同填法;
编号为1的方格内填数字4,共有3种不同填法.于是由分类加法计数原理,得共有3+3+3=9(种)不同的填法.
8.如图所示,在A,B间有四个焊接点,若焊接点脱落,则可能导致电路不通,今发现A,B之间线路不通,则焊接点脱落的不同情况有________种.
答案 13
解析 四个焊点共有24种情况,其中使线路通的情况有:
1,4都通,2和3至少有一个通时线路才通,共3种可能.故不通的情况有24-3=13(种)可能.
9.(2016·
日照模拟)从1,2,3,4,7,9六个数中,任取两个数作为对数的底数和真数,则所有不同对数值的个数为________.
答案 17
解析 当所取两个数中含有1时,1只能作真数,对数值为0,当所取两个数不含有1时,可得到A
=20(个)对数,但log23=log49,log32=log94,log24=log39,log42=log93,综上可知,共有20+1-4=17(个)不同的对数值.
10.(2016·
天津模拟)回文数是指从左到右与从右到左读都一样的正整数,如22,121,3443,94249等.显然2位回文数有9个:
11,22,33,…,99.3位回文数有90个:
101,111,121,…,191,202,…,999.则
(1)4位回文数有________个;
(2)2n+1(n∈N*)位回文数有________个.
答案
(1)90
(2)9×
10n
解析
(1)4位回文数相当于填4个方格,首尾相同,且不为0,共9种填法,中间两位一样,有10种填法,共计9×
10=90(种)填法,即4位回文数有90个.
(2)根据回文数的定义,此问题也可以转化成填方格.结合分步乘法计数原理,知有9×
10n种填法.
11.有一项活动需在3名老师,6名男同学和8名女同学中选人参加.
(1)若只需一人参加,有多少种不同选法?
(2)若需一名老师,一名学生参加,有多少种不同选法?
(3)若需老师,男同学,女同学各一人参加,有多少种不同选法?
解
(1)只需一人参加,可按老师,男同学,女同学分三类各自有3,6,8种方法,总方法数为3+6+8=17.
(2)分两步,先选教师共3种选法,再选学生共6+8=14(种)选法,由分步乘法计数原理知,总方法数为3×
14=42.
(3)教师,男同学,女同学各一人可分三步,每步方法依次为3,6,8种.由分步乘法计数原理知总方法数为3×
6×
8=144(种).
12.如图所示,将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种颜色可供使用,求不同的染色方法种数.
解 方法一 设想染色按S-A-B-C-D的顺序进行,对S,A,B染色,有5×
3=60(种)染色方法.
由于C点的颜色可能与A同色或不同色,这影响到D点颜色的选取方法数,故分类讨论:
C与A同色时(此时C对颜色的选取方法唯一),D应与A(C),S不同色,有3种选择;
C与A不同色时,C有2种可选择的颜色,D也有2种颜色可供选择.从而对C、D染色有1×
3+2×
2=7(种)染色方法.
由分步乘法计数原理,不同的染色方法种数为60×
7=420.
方法二 根据所用颜色种数分类,可分三类.
第一类:
用3种颜色,此时A与C,B与D分别同色,问题相当于从5种颜色中选3种涂三个点,共A
=60(种)涂法;
第二类:
用4种颜色,此时A与C,B与D中有且只有一组同色,涂法种数为2A
=240(种);
第三类:
用5种颜色,涂法种数共A
=120(种).
综上可知,满足题意的染色方法种数为60+240+120=420.
*13.已知集合M={-3,-2,-1,0,1,2},若a,b,c∈M,则:
(1)y=ax2+bx+c可以表示多少个不同的二次函数?
其中偶函数有多少个?
(2)y=ax2+bx+c可以表示多少个图象开口向上的二次函数?
解
(1)a的取值有5种情况,b的取值6种情况,c的取值有6种情况,因此y=ax2+bx+c可以表示5×
6=180(个)不同的二次函数.若二次函数为偶函数,则b=0,故有5×
6=30(个).
(2)y=ax2+bx+c的图象开口向上时,a的取值有2种情况,b、c的取值均有6种情况,因此y=ax2+bx+c可以表示2×
6=72(个)图象开口向上的二次函数.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 浙江 专用版 高考 数学 一轮 复习 第十 计数 原理 101 分类 加法 分步 乘法
链接地址:https://www.bdocx.com/doc/16387706.html