微观经济学计算题练习题Word格式.docx
- 文档编号:16170871
- 上传时间:2022-11-21
- 格式:DOCX
- 页数:25
- 大小:173.94KB
微观经济学计算题练习题Word格式.docx
《微观经济学计算题练习题Word格式.docx》由会员分享,可在线阅读,更多相关《微观经济学计算题练习题Word格式.docx(25页珍藏版)》请在冰豆网上搜索。
Q/2
由此,
这
100个消费者合计的弹性为
d(Qi
Qj)P
25
且
Edj
75dQi25dQjP
()
iidPjidPQ
将式
(1)、(3)代入,得
7525
Ed[(2Q^)(
i1Pj1
275325
[=QikQj]
Pi1Pj1
将式
(2)、(4)代入,得
(2Q3QP
(P2P
/23QP
22PQ
2)Q
5
3.若无差异曲线是一条斜率是-b的直线,价格为Px、Py,收入为M时,最优商品组合是什么?
预算方程为:
Px•x+Py•y=M,其斜率为-Px/Py
MRSxy=MUx/MUY=-b
由于无差异曲线是直线,这时有角解。
当b>
Px/Py时,角解是预算线与横轴的交点,如图3—19(a)所示。
这时,y=0
由预算方程得,x=M/Px
最优商品组合为(M/Px,0)
当b<
Px/Py时,角解是预算线与纵轴的交点,如图3-i9(b)所示
这时,x=0
由预算方程得,y=M/P
最优商品组合为(0,M/Py)
当b=Px/Py时,预算线上各点都是最优商品组合点。
4.若需求函数为q=a-bp,a、b>
0,求:
(i)当价格为Pi时的消费者剩余是多少?
(2)当价格由Pi变到P2时消费者剩余变化了多少?
⑴由g=a-bP,得反需求函数为P
设价格为pi时,需求量为qi,qi=a-bPi
消费者剩余=
2bap
⑵设价格为p2时,需求量为q2,q2=a-bp2
消费者剩余变化量
q2aq22qiaq
0(〒)dqpq[o(〒)dqpiqi]
12
aq2qb
122.
aq2?
q2戶_b2、
P2q2(apiPi)
b2b2
22
a2b2zab2、
2bap2p2(2bapi2pi)
b2b2
-p22Piap?
api
5.X公司和Y公司是机床行业的两个竞争者。
这两家公司的主要产品的需求曲线分别为:
公司X:
Px=1000-5QX,公司Y:
Py=1600-4Qy。
这两家公司现在的销售量分别为100单位X和250单位丫。
(1)求X和丫当前的价格弹性。
⑵假定丫降价后,使Qy增加到300单位,同时导致X的销售量Qx下降到75单位,试问X公司产品X的交叉价格弹性是多少?
(a)由题设,Qx=100,Qy=250,贝U
Px=1000-5Qx=1000-5X100=500
Py=1600-4Qy=1600-4X250=600
于是x之价格弹性
EdQxPx16003
dxdFxQy42505
y之价格弹性
EdQyPy16003
dydPyQy42505
(b)由题设,Q'
y=300,Q'
x=75
这样,P'
y=1600-4Q'
y
=1600-4X300
=400
△Qx=Q'
x-Qx
=75-100
=-25
△Py=P'
y-Py
=400-600
=-200
于是,X公司产品x对丫公司产品y的交叉价格弹性
25(6000400)/2
200(10075)/2
11000
8775
125
175
=5/7
即交叉价格弹性为5/7
6.令消费者的需求曲线为p二a-bp,a、b>
0,并假定征收lOOt%的销售税,使得他支付的价格提高到P(1+t)。
证明他损失的消费者剩余超过政府征税而提高的收益。
设价格为p时,消费者的需求量为q1,由p=a-bq1,得
q1
又设价格为P(1+t)时,消费者的需求量为q2,由P=a-bq2
消费者剩余损失
(aqbq2I(1t)pq?
pq
(aq1gqj)(aq?
bqf)(1t)pq2pq1
政府征税而提高的收益=(1+t)pq2-pq1
消费者剩余亏损一政府征税而提高的收益
aa
22
2b
因此,消费者剩余损失总是超过政府征税而提高的收益。
7.假定效用函数为U二q0.5+2M,q为消费的商品量,M为收入。
求:
⑴需求曲线;
(2)反需求曲线;
⑶p=0.05,q=25时的消费者剩余。
(1)根据题意可得,商品的边际效用
单位货币的效用为
进而得,q亠,这就是需求曲线。
16p
⑶当p=0.05,q=25时,
8•若某消费者对X、丫的效用函数如下:
U(x)=20X-X2,U(y)=40Y-4Y2,且Px=2元,Py=4元,现有收入24元,该消费者
要花完全部现有收入并获得最大效用,应购买X、丫各多少?
2x4y242x4y24
MUxMUy202x408y
PxPy4~~
解得:
y3
x6
9.某消费者的效用函数为U=XY,Px=1元,Py=2元,M=40元,现在Py突然下降
到1元。
试问:
(1)丫价格下降的替代效应使他买更多还是更少的丫?
(2)Y价格下降对丫需求的收入效应相当于他增加或减少多少收入的效应?
收入效应使他
买更多还是更少的丫?
(3)了价格下降的替代效应使他买更多还是更少的X?
收入效应使他买更多还是更少的
X?
Y价格下降对X需求的总效应是多少?
对丫需求的总效应又是多少?
(1)先求价格没有变化时,他购买的X和丫的量。
这时已知,Px=1,Py=2,U=
XY
UU
MUxy,MUyX
xXy丫
叫竺,即为Y△
PxPy12
X+2Y=40
解「Y=X/2
X+2Y=40
得+X=20(即图中0X1)
Y=10(即图中0Y1)
再求购买20单位的X、10单位的丫在新价格下需要的收入
M=Px•x+Py•y=1X20+1X10=30(元)
最后,求在新价格和新收入(30元)下他购买的X和丫的量。
Px=1,Py=1,MUx=Y,MUy=X
MUx/Px=MUy/Py即为:
Y/仁X/1
预算约束为:
X+Y=30
解]Y=X
X+Y=30
得]X=15
Y=15
因此,丫价格下降使他购买更多的y,多购买(15-10)=5单位,在图中从0丫1增加到
OY2。
⑵先求y价格下降后,他实际购买的X和丫的量
Px=1,Py=1,M=40,MUx=Y,MUy=X
X+Y=40
解「Y=X
X+Y=50
得X=20
Y=20
可见,丫价格下降的收入效应使他购买更多的丫即在图中从0丫2增加到0丫3,购买
(20-15)=5单位。
由于在新价格和收入为30元时,他购买15单位的X、15单位的丫。
在新价格下,要
使他能购买20单位X、20单位丫,需增加10元收入,即收入为40元。
所以,要增购5单位丫的话,必需增加10元收入,即图中预算线上升到A'
B。
因此,丫价格下降对丫需求的收入效应相当于他增加10元收入的效应。
⑶丫的价格下降的替代效应使他买更少的X,少买(20-15)=5单位,即图中X的购买量从0x1降为0x2。
收入效应使他购买更多的X,多买(20-15)=5单位,即图中X的购买量从Ox2恢复到OX1。
丫价格下降对X需求的总效应为零。
y价格下降的替代效应使他多购买5单位丫,收入效应使他也多购买5单位丫。
故丫价格下降对丫需求的总效应为10单位,即图中丫1丫3=丫1丫2+丫2丫3。
10.已知生产函数为Q2L0.6K0.2,请问:
(a)该生产函数是否为齐次函数?
次数为若干?
(b)该生产函数的规模报酬情况。
(c)假如L与K均按其边际产量取得报酬,当L与K取得报偿后,尚有多少剩余产值?
(a)Qf(L,K)2L0.6K0.2
f(L,K)2(L)0.6(K)0.2
0.8Q
•••该生产函数为齐次函数,其次数为0.8。
(b)根据a)题f(L,K)0.8Q
可知该生产函数为规模报酬递减的生产函数。
(c)对于生产函数Q2L0.6K0.2
MPPL2K0.20.6L0.41.2L0.4K0.2
MPPK2L0.80.2K0.80.2K0.80.4L0.6K0.8
这里的剩余产值是指总产量减去劳动和资本分别按边际产量取得报酬以后的余额,故
剩余产值=Q-L•MPPl-K•MPPk
2La6K0.2
L1.2L0.4K0.2K0.4L0BK08
2L06K0.2
1.2L0'
6K0.20.4L0BK0.2
0.4L0.6K0.2
0.2Q
11.已知生产函数为
10KL
Qf(K,L)
(a)求出劳动的边际产量及平均产量函数。
(b)考虑该生产函数的边际技术替代率函数(MRTS)的增减性。
(c)考虑该生产函数劳动的边际产量函数的增减性。
(a)劳动的边际产量函数MPPl=dQ/dL
d(10KL)
dL(KL)
10K(KL)10KL
(KL)
10K2
(KL)2
劳动的平均产量函数APPl=Q/L
10KL1
KLL10K
KL
(b)生产函数边际技术替代率指产量不变条件下一种生产要素增加的投入量与另一种生
产要素相应减少的投入量之比,即-△K/△L或-dK/dL。
为此,需要从生产函数中先求得K
和L之间的关系,然后从这一关系中求得dK/dL由生产函数Q=卫匕
得QK+QL=1OKL
K(Q-10L)=-QL
Q10L
则边际技术替代率MRTS=-dK/dL
QL
10L
Q(Q10L)QL(10)
(Q10L)
Q2
(Q10L)2
当dK/dL>
0时,
dK/dL<
所以该生产函数的边际技术替代率函数为减函数。
d10K2dL(KL)2
10K22(KL)
4(KL)
20K
所以该生产函数的边际产量函数为减函数。
12.某公司拟用甲、乙两厂生产同一种产品,如果用x代表甲厂的产量,用y代表乙厂的产量,其总成本函数为C=x2+3y2-xy
(a)求该公司在生产总量为30单位时使总成本最低的产量组合。
(b)如用拉格朗日函数求解(a)题,请解释入的经济意义。
(a)这个约束最佳化问题的数学表达如下:
minC=x2+3y2-xy
S.t.x+y=30
设拉格朗日函数为
X=x+3y2-xy+(xy30)
分别对x、y及入求偏导,得
由
(1),
(2)式得
y-2x=x-6y
3x=7y
x=7/3y
代入(3)式中,
7/3y+y=3。
y=9
x=7/3y=21
(b)一般说来,任何拉格朗日函数入都表明约束条件增减一个单位时对原始目标函数的边际影响。
如在本题中,入可视为总产量为30个单位时的边际生产成本,它表明如果该公司原先产量为29单位,而现在增至30单位,则其总成本将增加33。
这种边际关系对企业估价放宽某个约束条件可能得到的效益是十分重要的
13.已知生产函数为Q=min(3K,4L)
(a)作出Q=100时的等产量曲线
(b)推导出边际技术替代率函数。
(c)讨论其规模报酬情况。
(a)生产函数Q二min(3K,4L)表示定比生产函数,它反映了资本和劳动在技术上必须以固定比例投入的情况,本题Q二100时等产量曲线为如图所示的直角形式,资本与劳动的必要比例为K/L=4/3。
且3K=4L=100。
即K=100/3,L=25
(b)由3K=4L,推出
K—I
MRTSdK亠红)4
dLdL33
(c)Qf(L,K)min(3K,4L)
f(L,K)min(3K,4L)
min(3K,4L)
•••该生产函数为规模报酬不变。
14•若很多相同厂商的长期成本函数都是LTC=Q3-4Q2+8Q,如果正常利润是正的,
厂商将进入行业;
如果正常利润是负的,厂商将退出行业。
(1)描述行业的长期供给函数。
⑵假设行业的需求函数为Qd=2000-100P,试求行业均衡价格,均衡产量和厂商的人数。
⑴已知LTC=Q3-4Q2+80贝ULAC=Q2-4Q+8,欲求LAC的最小值,只要令dLAC/dQ=O即20-4=0•Q=2这就是说,每个厂商的产量为Q=2时,长期平均成本最低,其长
期平均成本为:
LAC=22-4X2+8=4。
当价格P等于长期平均成本4时,厂商既不进入,也不退出,即整个行业处于均衡状态。
故行业长期供给函数即供给曲线是水平的,行业的长期供给函数为P=4
⑵已知行业的需求曲线为Qd=2000-100P,而行业的供给函数为P=4,把P=4代入
Qd=2000-100P中可得:
行业需求量Qd=2000-100X4=1600
由于每个厂商长期均衡产量为2,若厂商有n个,则供给量Qs=2n。
行业均衡时,QD
=Qs,即1600=2n,二n=800。
故整个行业均衡价格为4,均衡产量为1600,厂商
有800家。
15.假设利润为总收益减总成本后的差额,总收益为产量和产品价格的乘积,某产品总成
本(单位:
万元)的变化率即边际成本是产量(单位:
百台)的函数C'
=4+Q/4,总收益的变化率即边际收益也是产量的函数R'
=9-Q,试求:
(a)产量由1万台增加到5万台时总成本与总收入各增加多少?
(b)产量为多少时利润极大?
(c)已知固定成本FC=1(万元),产量为18时总收益为零,贝U总成本和总利润函数如何?
最大利润为多少?
(a)由边际成本函数C'
=4+Q/4积分得
总成本函数c=40+1/8Q2+a(a为常数)
当产量由1万台增加到5万台时,
总成本增量△C=(4X5+25/8+a)-(4+1/8+a)
=19(万元)
由边际收益函数及R'
二9-Q积分得
总收益函数R=9Q-1/2Q2+b(b为常数)
当产量从1万台增加到5万台时,
=24(万元)
RC
(b)
'
R'
C'
9Q4—
5Q5
令
求得
Q=4(万台)
当产量为4万台时利润最大
(c)t固定成本FC=1
即在(a)题中求得的总成本函数中常数a=1
•••总成本函数C-Q24Q1
8
又tQ=18时,R=0
11
即R9Q-Q2b918—182b0
求得b=0
总收益函数R=9Q-1/2Q
1212
RC9QQ2Q24Q1则28
5Q25Q1
又由(b)题的结论
当产量Q=4万台时利润极大
16.完全竞争行业中某厂商的成本函数为STC=Q3—6Q2+30Q+40,成本用美元计算,假设产品价格为66美元
(1)求利润极大时的产量及利润总额。
(2)由于竞争市场供求发生变化,由此决定的新的价格为30美元,在新的价格下,厂商是
否会发生亏损?
如果会,最小的亏损额为多少?
(3)该厂商在什么情况下才会退出该行业?
(1)已知厂商的短期成本函数为STC=Q3-6Q2+30Q+40则
SMC=dSTC/dQ=3Q2-12Q+30,又知P=66美元。
利润极大化的条件为P=SMC即66=
302—120+30,解方程得:
Q=6,Q=2。
出现两个产量值时,可根据利润极大化的充分条件来判断,即根据警響来判断
PQ-(Q3-6Q2+30Q+40)=66
X6-(63-6X62+30X6+40)=176,即利润极大值为176美元。
(2)由于市场供求发生变化,新的价格为P=30美元,厂商是否会发生亏损?
仍要根据P
=MC所决定的均衡产量计算利润为正还是为负。
不论利润极大还是亏损最小,均衡条件都
为P=MC,即30=3Q2-12Q+30,二Q=4Q=0(没有经济意义,舍去)。
一般来说,方程
只有一个有经济意义的解时可以不考虑充分条件。
需要验证是否满足充分条件也是可以的
可见,当价格为30元时,厂商会发生亏损,最小亏损额为8美元
(3)厂商退出行业的条件是PvAVC的最小值。
tTC=Q3-6Q2+30Q+20,v
VC=Q3-6Q2+30Q二AVC=VC/Q=Q2-6Q+30要求AVC最低点的值,只要令
dAVC/dQ=0,即dAVC/dQ=2Q-6=0,二Q=3当Q=3时AVC=32633021,
可见,只要价格P<
21,厂商就会停止生产。
17.完全竞争行业中某厂商的成本函数为STC=Q3-6Q2+30Q+40,成本用美元计
算,假设产品价格为66美元。
(2)由于竞争市场供求发生变化,由此决定的新的价格为30美元,在新的价格下,厂商
是否会发生亏损?
(1)已知厂商的短期成本函数为STC=Q3-6Q2+30Q+40则
Q=6,Q=2
出现两个产量值时,可根据利润极大化的充分条件来判断,即根据
不论利润极大还是亏损最小,均衡条件都为P=MC,即30=3Q2-12Q+30,二Q=4Q=0(没有经济意义,舍去)。
一般来说,方程只有一个有经济意义的解时可以不考虑充分条件。
需要验证是否满足充分条件也是可以的。
当Q=4时,d^C=6X4-12=12>
0,即d^TCd^R,故Q=4是利润最大或亏损最小dQ2dQ2dQ2
的产量。
利润n=TR-TC=PQ-(Q3-6Q2+30Q+40)=30X4-(4364230440)8,
可见,当价格为30元时,厂商会发生亏损,最小亏损额为8美元。
tTC=Q3-6Q2+30Q+20,vVC=Q3-6Q2+30Q二AVC=VC/Q=Q2-6Q+30要求AVC最低点的值,只要令dAVC/dQ=0,即dAVC/dQ=2Q-6=0,二Q=3当Q=3时AVC=32633021,
18.若很多相同厂商的长期成本函数都是LTC=Q3-4Q2+8Q,如果正常利润是正的,厂商将进入行业;
⑵假设行业的需求函数为Qd=2000—100P,试求行业均衡价格,均衡产量和厂商的人数。
(1)已知LTC=Q3-4Q2+80贝ULAC=Q2-4Q+8,欲求LAC的最小值,只要令dLAC/dQ=0
即20-4=0二Q=2这就是说,每个厂商的产量为Q=2时,长期平均成本最低,其长期平均成本为:
当价格P等于长期平均成本4时,厂商既不进入,也不退出,即整个行业处于均衡状态。
故行业长期供给函数即供给曲线是水平的,行业的长期供给函数为P=4。
由于每个厂商长期均衡产量为2,若厂商有n个,则供给量Qs=2n。
行业均衡时,Qd=Qs,即1600=2n,二n=800。
故整个行业均衡价格为4,均衡产量为1600,厂商有800家。
19.假设一个垄断厂商面临的需求曲线为P=10-3Q,成本函数为TC=Q2+2Q。
(1)求利润极大时的产量、价格和利润。
(2)如果政府企图对该垄断厂商采取限价措施迫使其达到完全竞争产业所能达到的产量水平,则限价应为多少?
(3)如果政府打算对该垄断厂商征收一笔固定的调节税,以便把该厂商所获得的超额利润都拿去,试问这笔固定税的总额是多少?
⑴已知P=10-3Q,贝UMR=1
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 微观经济学 算题 练习题