实际问题与二元一次方程组经典例题.docx
- 文档编号:1611478
- 上传时间:2022-10-23
- 格式:DOCX
- 页数:15
- 大小:103.39KB
实际问题与二元一次方程组经典例题.docx
《实际问题与二元一次方程组经典例题.docx》由会员分享,可在线阅读,更多相关《实际问题与二元一次方程组经典例题.docx(15页珍藏版)》请在冰豆网上搜索。
实际问题与二元一次方程组经典例题
实际问题与二元一次方程组经典例题
目标认知
学习目标:
1.能够借助二元一次方程组解决简单的实际问题,再次体会二元一次方程组与现实生活的联系和作用
2.进一步使用代数中的方程去反映现实世界中等量关系,体会代数方法的优越性
3.体会列方程组比列一元一次方程容易
4.进一步培养化实际问题为数学问题的能力和分析问题,解决问题的能力
5.掌握列方程组解应用题的一般步骤;
重点:
1.经历和体验用二元一次方程组解决实际问题的过程。
2.进一步体会方程(组)是刻画现实世界的有效数学模型。
难点:
正确找出问题中的两个等量关系
知识要点梳理
知识点一:
列方程组解应用题的基本思想
列方程组解应用题是把“未知”转化为“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的相等关系.一般来说,有几个未知数就列出几个方程,所列方程必须满足:
(1)方程两边表示的是同类量;
(2)同类量的单位要统一;(3)方程两边的数值要相等.
知识点二:
列方程组解应用题中常用的基本等量关系
1.行程问题:
(1)追击问题:
追击问题是行程问题中很重要的一种,它的特点是同向而行。
这类问题比较直观,画线段,用图便于理解与分析。
其等量关系式是:
两者的行程差=开始时两者相距的路程; ;;
(2)相遇问题:
相遇问题也是行程问题中很重要的一种,它的特点是相向而行。
这类问题也比较直观,因而也画线段图帮助理解与分析。
这类问题的等量关系是:
双方所走的路程之和=总路程。
(3)航行问题:
①船在静水中的速度+水速=船的顺水速度;
②船在静水中的速度-水速=船的逆水速度;
③顺水速度-逆水速度=2×水速。
注意:
飞机航行问题同样会出现顺风航行和逆风航行,解题方法与船顺水航行、逆水航行问题类似。
2.工程问题:
工作效率×工作时间=工作量.
3.商品销售利润问题:
(1)利润=售价-成本(进价);
(2);(3)利润=成本(进价)×利润率;
(4)标价=成本(进价)×(1+利润率);(5)实际售价=标价×打折率;
注意:
“商品利润=售价-成本”中的右边为正时,是盈利;为负时,就是亏损。
打几折就是按标价的十分之几或百分之几十销售。
(例如八折就是按标价的十分之八即五分之四或者百分之八十)
4.储蓄问题:
(1)基本概念
①本金:
顾客存入银行的钱叫做本金。
②利息:
银行付给顾客的酬金叫做利息。
③本息和:
本金与利息的和叫做本息和。
④期数:
存入银行的时间叫做期数。
⑤利率:
每个期数内的利息与本金的比叫做利率。
⑥利息税:
利息的税款叫做利息税。
(2)基本关系式
①利息=本金×利率×期数
②本息和=本金+利息=本金+本金×利率×期数=本金×(1+利率×期数)
③利息税=利息×利息税率=本金×利率×期数×利息税率。
④税后利息=利息×(1-利息税率)⑤年利率=月利率×12⑥。
注意:
免税利息=利息
5.配套问题:
解这类问题的基本等量关系是:
总量各部分之间的比例=每一套各部分之间的比例。
6.增长率问题:
解这类问题的基本等量关系式是:
原量×(1+增长率)=增长后的量;
原量×(1-减少率)=减少后的量.
7.和差倍分问题:
解这类问题的基本等量关系是:
较大量=较小量+多余量,总量=倍数×倍量.
8.数字问题:
解决这类问题,首先要正确掌握自然数、奇数、偶数等有关概念、特征及其表示。
如当n为整数时,奇数可表示为2n+1(或2n-1),偶数可表示为2n等,有关两位数的基本等量关系式为:
两位数=十位数字10+个位数字
9.浓度问题:
溶液质量×浓度=溶质质量.
10.几何问题:
解决这类问题的基本关系式有关几何图形的性质、周长、面积等计算公式
11.年龄问题:
解决这类问题的关键是抓住两人年龄的增长数是相等,两人的年龄差是永远不会变的
12.优化方案问题:
在解决问题时,常常需合理安排。
需要从几种方案中,选择最佳方案,如网络的使用、到不同旅行社购票等,一般都要运用方程解答,得出最佳方案。
注意:
方案选择题的题目较长,有时方案不止一种,阅读时应抓住重点,比较几种方案得出最佳方案。
知识点三:
列二元一次方程组解应用题的一般步骤
利用二元一次方程组探究实际问题时,一般可分为以下六个步骤:
1.审题:
弄清题意及题目中的数量关系;2.设未知数:
可直接设元,也可间接设元;
3.找出题目中的等量关系;4.列出方程组:
根据题目中能表示全部含义的等量关系列出方程,并组成方程组;5.解所列的方程组,并检验解的正确性;6.写出答案.
要点诠释:
(1)解实际应用问题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的解应该舍去;
(2)“设”、“答”两步,都要写清单位名称;
(3)一般来说,设几个未知数就应该列出几个方程并组成方程组.
解答步骤简记为:
问题方程组解答
(4)列方程组解应用题应注意的问题
①弄清各种题型中基本量之间的关系;②审题时,注意从文字,图表中获得有关信息;③注意用方程组解应用题的过程中单位的书写,设未知数和写答案都要带单位,列方程组与解方程组时,不要带单位;④正确书写速度单位,避免与路程单位混淆;⑤在寻找等量关系时,应注意挖掘隐含的条件;⑥列方程组解应用题一定要注意检验。
经典例题透析
类型一:
列二元一次方程组解决——行程问题
1.甲、乙两地相距160千米,一辆汽车和一辆拖拉机同时由甲、乙两地相向而行,1小时20分相遇.相遇后,拖拉机继续前进,汽车在相遇处停留1小时后调转车头原速返回,在汽车再次出发半小时后追上了拖拉机.这时,汽车、拖拉机各自行驶了多少千米?
思路点拨:
画直线型示意图理解题意:
(1)这里有两个未知数:
①汽车的行程;②拖拉机的行程.
(2)有两个等量关系:
①相向而行:
汽车行驶小时的路程+拖拉机行驶小时的路程=160千米;
②同向而行:
汽车行驶小时的路程=拖拉机行驶小时的路程.
解:
设汽车的速度为每小时行千米,拖拉机的速度为每小时千米.
根据题意,列方程组
解这个方程组,得:
.
答:
汽车行驶了165千米,拖拉机行驶了85千米.
总结升华:
根据题意画出示意图,再根据路程、时间和速度的关系找出等量关系,是行程问题的常用的解决策略。
举一反三:
【变式1】甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?
解:
设甲、乙两人每小时分别行走千米、千米。
根据题意可得:
解得:
答:
甲每小时走6千米,乙每小时走3.6千米。
【变式2】两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。
分析:
船顺流速度=静水中的速度+水速
船逆流速度=静水中的速度-水速
解:
设船在静水中的速度为x千米/时,水速为y千米/时,
则,解得:
答:
船在静水中的速度为17千米/时,水速3千米/时。
类型二:
列二元一次方程组解决——工程问题
2.一家商店要进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可完成,需付两组费用共3480元,问:
(1)甲、乙两组工作一天,商店应各付多少元?
(2)已知甲组单独做需12天完成,乙组单独做需24天完成,单独请哪组,商店所付费用最少?
思路点拨:
本题有两层含义,各自隐含两个等式,第一层含义:
若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;第二层含义:
若先请甲组单独做6天,再请乙组单独做12天可完成,需付两组费用共3480元。
设甲组单独做一天商店应付x元,乙组单独做一天商店应付y元,由第一层含义可得方程8(x+y)=3520,由第二层含义可得方程6x+12y=3480.
解:
(1)设甲组单独做一天商店应付x元,乙组单独做一天商店应付y元,依题意得:
解得
答:
甲组单独做一天商店应付300元,乙组单独做一天商店应付140元。
(2)单独请甲组做,需付款300×12=3600元,单独请乙组做,需付款24×140=3360元,
故请乙组单独做费用最少。
答:
请乙组单独做费用最少。
总结升华:
工作效率是单位时间里完成的工作量,同一题目中时间单位必须统一,一般地,将工作总量设为1,也可设为a,需根据题目的特点合理选用;工程问题也经常利用线段图或列表法进行分析。
举一反三:
【变式】小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元.若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?
请你说明理由.
解:
设甲、乙两公司每周完成总工程的和,由题意得:
,解得:
所以甲、乙单独完成这项工程分别需要10周、15周。
设需要付甲、乙每周的工钱分别是万元,万元,根据题意得:
,解得:
故甲公司单独完成需工钱:
(万元);乙公司单独完成需工钱:
(万元)。
答:
甲公司单独完成需6万元,乙公司单独完成需4万元,故从节约的角度考虑,应选乙公司单独完成.
类型三:
列二元一次方程组解决——商品销售利润问题
3.有甲、乙两件商品,甲商品的利润率为5%,乙商品的利润率为4%,共可获利46元。
价格调整后,甲商品的利润率为4%,乙商品的利润率为5%,共可获利44元,则两件商品的进价分别是多少元?
思路点拨:
做此题的关键要知道:
利润=进价×利润率
解:
甲商品的进价为x元,乙商品的进价为y元,由题意得:
,解得:
答:
两件商品的进价分别为600元和400元。
举一反三:
【变式1】(2011湖南衡阳)李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?
解:
设李大叔去年甲种蔬菜种植了亩,乙种蔬菜种植了亩,则:
,解得
答:
李大叔去年甲种蔬菜种植了6亩,乙种蔬菜种植了4亩.
【变式2】某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表:
A
B
进价(元/件)
1200
1000
售价(元/件)
1380
1200
(注:
获利=售价—进价)
求该商场购进A、B两种商品各多少件;
解:
设购进A种商品件,B种商品件,根据题意得:
化简得:
解得:
答:
该商场购进A、B两种商品分别为200件和120件。
类型四:
列二元一次方程组解决——银行储蓄问题
4.小明的妈妈为了准备小明一年后上高中的费用,现在以两种方式在银行共存了2000元钱,一种是年利率为2.25%的教育储蓄,另一种是年利率为2.25%的一年定期存款,一年后可取出2042.75元,问这两种储蓄各存了多少钱?
(利息所得税=利息金额×20%,教育储蓄没有利息所得税)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 实际问题 二元 一次 方程组 经典 例题