新课标九年级数学中考复习强效提升分数精华版 二次函数的应用利润最值问题.docx
- 文档编号:1604752
- 上传时间:2022-10-23
- 格式:DOCX
- 页数:11
- 大小:232.96KB
新课标九年级数学中考复习强效提升分数精华版 二次函数的应用利润最值问题.docx
《新课标九年级数学中考复习强效提升分数精华版 二次函数的应用利润最值问题.docx》由会员分享,可在线阅读,更多相关《新课标九年级数学中考复习强效提升分数精华版 二次函数的应用利润最值问题.docx(11页珍藏版)》请在冰豆网上搜索。
新课标九年级数学中考复习强效提升分数精华版二次函数的应用利润最值问题
学员姓名:
年级:
九年级日期:
辅导科目:
数学时间:
课题
九上第六讲:
二次函数的应用——利润最值问题
授课日期
教学目标
1、熟练掌握二次函数的概念、图像及性质;
2、学会灵活运用二次函数的概念、图像及性质来解决实际问题。
教学内容
二次函数的应用——利润最值问题
〖教学重点与难点〗
◆教学重点:
熟悉二次函数的概念、图像及其性质。
灵活运用二次函数的概念、图像及性质来解决实际问题。
◆教学难点:
灵活运用二次函数的概念、图像及性质来解决实际问题。
〖教学过程〗
一、知识要点:
二次函数的一般式()化成顶点式,如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值).
即当时,函数有最小值,并且当,;
当时,函数有最大值,并且当,.
如果自变量的取值范围是,如果顶点在自变量的取值范围内,则当,,如果顶点不在此范围内,则需考虑函数在自变量的取值范围内的增减性;如果在此范围内随的增大而增大,则当时,
,当时,;
如果在此范围内随的增大而减小,则当时,,当时,.
二、典型例题:
[例1]:
求下列二次函数的最值:
(1)求函数的最值.
解:
当时,有最小值,无最大值.
(2)求函数的最值.
解:
∵,对称轴为
∴当.
[例2]:
某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:
每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大?
解:
设涨价(或降价)为每件元,利润为元,
为涨价时的利润,为降价时的利润
则:
当,即:
定价为65元时,(元)
当,即:
定价为57.5元时,(元)
综合两种情况,应定价为65元时,利润最大.
变式训练:
1.某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.如何提高售价,才能在半个月内获得最大利润?
解:
设每件价格提高元,利润为元,
则:
当,(元)
答:
价格提高5元,才能在半个月内获得最大利润.
2.某旅行社组团去外地旅游,30人起组团,每人单价800元.旅行社对超过30人的团给予优惠,即旅行团每增加一人,每人的单价就降低10元.你能帮助分析一下,当旅行团的人数是多少时,旅行社可以获得最大营业额?
解:
设旅行团有人,营业额为元,
则:
当,(元)
答:
当旅行团的人数是55人时,旅行社可以获得最大营业额.
x(元)
15
20
30
…
y(件)
25
20
10
…
[例3]:
某产品每件成本10元,试销阶段每件产品的销售价(元)与产品的日销售量(件)之间的关系如下表:
若日销售量是销售价的一次函数.
⑴求出日销售量(件)与销售价(元)的函数关系式;
⑵要使每日的销售利润最大,每件产品的销售价应定为多少元?
此时每日销售利润是多少元?
解:
⑴设一次函数表达式为.
则解得,
即一次函数表达式为.
⑵设每件产品的销售价应定为元,
所获销售利润为元
当,(元)
答:
产品的销售价应定为25元时,每日获得最大销售利润为225元.
【点评】解决最值问题应用题的思路与一般应用题类似,也有区别,主要有两点:
⑴在“当某某为何值时,什么最大(或最小、最省)”的设问中,“某某”要设为自变量,“什么”要设为函数;⑵求解方法是依靠配方法或最值公式,而不是解方程.
变式训练:
3.市“健益”超市购进一批20元/千克的绿色食品,如果以30元/千克销售,那么每天可售出400千克.由销售经验知,每天销售量(千克)与销售单价(元)()存在如下图所示的一次函数关系式.
⑴试求出与的函数关系式;
⑵设“健益”超市销售该绿色食品每天获得利润P元,当销售单价为何值时,每天可获得最大利润?
最大利润是多少?
⑶根据市场调查,该绿色食品每天可获利润不超过4480元,现该超市经理要求每天利润不得低于4180元,请你帮助该超市确定绿色食品销售单价的范围(直接写出答案).
解:
⑴设y=kx+b由图象可知,
,
即一次函数表达式为.
⑵
∵∴P有最大值.
当时,(元)
(或通过配方,,也可求得最大值)
答:
当销售单价为35元/千克时,每天可获得最大利润4500元.
⑶∵
∴31≤x≤34或36≤x≤39.
[例4]:
研究所对某种新型产品的产销情况进行了研究,为投资商在甲、乙两地生产并销售该产品提供了如下成果:
第一年的年产量为(吨)时,所需的全部费用(万元)与满足关系式,投入市场后当年能全部售出,且在甲、乙两地每吨的售价,(万元)均与满足一次函数关系.(注:
年利润=年销售额-全部费用)
(1)成果表明,在甲地生产并销售吨时,,请你用含的代数式表示甲地当年的年销售额,并求年利润(万元)与之间的函数关系式;
(2)成果表明,在乙地生产并销售吨时,(为常数),且在乙地当年的最大年利润为35万元.试确定的值;
(3)受资金、生产能力等多种因素的影响,某投资商计划第一年生产并销售该产品18吨,根据
(1),
(2)中的结果,请你通过计算帮他决策,选择在甲地还是乙地产销才能获得较大的年利润?
解:
(1)甲地当年的年销售额为万元;
.
(2)在乙地区生产并销售时,
年利润.
由,解得或.
经检验,不合题意,舍去,.
(3)在乙地区生产并销售时,年利润,
将代入上式,得(万元);将代入,
得(万元).,应选乙地.
变式训练:
4.为了落实国务院副总理李克强同志到恩施考察时的指示精神,最近,州委州政府又出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量w(千克)与销售价x(元/千克)有如下关系:
w=-2x+80.设这种产品每天的销售利润为y(元).
(1)求y与x之间的函数关系式;
(2)当销售价定为多少元时,每天的销售利润最大?
最大利润是多少?
(3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元?
解:
当,(元)
(1)与之间的的函数关系式为;
(2)当销售价定为30元时,每天的销售利润最大,最大利润是200元.
(3),
(不合题意,舍去)
答:
该农户想要每天获得150元的销售利润,销售价应定为25元.
3、本课小结:
本课主要学习了利用二次函数解决利润问题中的一些最值情况,解决这类问题,一般先理清题中的各个数量关系,通过建模思想建立函数模型,最后利用二次函数中求最值的方法来达到我们解决问题的目的!
四、课后作业:
1.二次函数,当x=_-1,_时,y有最_小_值,这个值是.
2.某一抛物线开口向下,且与x轴无交点,则具有这样性质的抛物线的表达式可能为(只写一个),此类函数都有_大_值(填“最大”“最小”).
3.不论自变量x取什么实数,二次函数y=2x2-6x+m的函数值总是正值,你认为m的取值范围是,此时关于一元二次方程2x2-6x+m=0的解的情况是_有解_(填“有解”或“无解”)
解:
∵,要使,只有∴
4.小明在某次投篮中,球的运动路线是抛物线的一部分,如图所示,若命中篮圈中心,则他与篮底的距离L是4.5米.
解:
当时,
,或(不合题意,舍去)
5.在距离地面2m高的某处把一物体以初速度V0(m/s)竖直向上抛出,在不计空气阻力的情况下,其上升高度s(m)与抛出时间t(s)满足:
S=V0t-gt2(其中g是常数,通常取10m/s2),若V0=10m/s,则该物体在运动过程中最高点距离地面__7_m.
解:
当时,,所以,最高点距离地面(米).
6.影响刹车距离的最主要因素是汽车行驶的速度及路面的摩擦系数.有研究表明,晴天在某段公路上行驶上,速度为V(km/h)的汽车的刹车距离S(m)可由公式S=V2确定;雨天行驶时,这一公式为S=V2.如果车行驶的速度是60km/h,那么在雨天行驶和晴天行驶相比,刹车距离相差_36_米.
7.将进货单价为70元的某种商品按零售价100元售出时,每天能卖出20个.若这种商品的零售价在一定范围内每降价1元,其日销售量就增加了1个,为了获得最大利润,则应降价_5_元,最大利润为_625_元.
解:
设每件价格降价元,利润为元,
则:
当,(元)
答:
价格提高5元,才能在半个月内获得最大利润.
8.如图,一小孩将一只皮球从A处抛出去,它所经过的路线是某个二次函数图象的一部分,如果他的出手处A距地面的距离OA为1m,球路的最高点B(8,9),则这个二次函数的表达式为______,小孩将球抛出了约______米(精确到0.1m).
解:
设,将点A代入,得
令,得
,,∴(米)
9.(2006年青岛市)在2006年青岛崂山北宅樱桃节前夕,某果品批发公司为指导今年的樱桃销售,对往年的市场销售情况进行了调查统计,得到如下数据:
销售价x(元/千克)
…
25
24
23
22
…
销售量y(千克)
…
2000
2500
3000
3500
…
(1)在如图的直角坐标系内,作出各组有序数对(x,y)所对应的点.连接各点并观察所得的图形,判断y与x之间的函数关系,并求出y与x之间的函数关系式;
(2)若樱桃进价为13元/千克,试求销售利润P(元)与销售价x(元/千克)之间的函数关系式,并求出当x取何值时,P的值最大?
解:
(1)由图象可知,y是x的一次函数,
设y=kx+b,
∵点(25,2000),(24,2500)在图象上,
∴,
∴y=-500x+14500.
(2)P=(x-13)·y=(x-13)·(-500x+14500)
=-500(x-21)2+32000
∴P与x的函数关系式为P=-500x2+21000x-188500,
当销售价为21元/千克时,能获得最大利润,最大利润为32000元.
10.有一种螃蟹,从海上捕获后不放养,最多只能存活两天.如果放养在塘内,可以延长存活时间,但每天也有一定数量的蟹死去.假设放养期内蟹的个体质量基本保持不变,现有一经销商,按市场价收购这种活蟹1000kg放养在塘内,此时市场价为每千克30元,据测算,此后每千克活蟹的市场价每天可上升1元,但是,放养一天需支出各种费用为400元,且平均每天还有10kg蟹死去,假定死蟹均于当天全部销售出,售价都是每千克20元.
(1)设x天后每千克活蟹的市场价为p元,写出p关于x的函数关系式;
(2)如果放养x天后将活蟹一次性出售,并记1000kg蟹的销售总额为Q元,写出Q关于x的函数关系式.
(3)该经销商将这批蟹放养多少天后出售,可获最大利润(利润=Q-收购总额)?
解:
(1)由题意知:
p=30+x,
(2)由题意知:
活蟹的销售额为(1000-10x)(30+x)元,
死蟹的销售额为200x元.
∴Q=(1000-10x)(30+x)+200x=-10x2+900x+30000.
(3)设总利润为W元
则:
W=Q-1000×30-400x=-10x2+500x
=-10(x2-50x)=-10(x-25)2+6250.
当x=25时,总利润最大,最大利润为6250元.
答:
这批蟹放养25天后出售,可获最大利润.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新课标九年级数学中考复习强效提升分数精华版 二次函数的应用利润最值问题 新课 九年级 数学 中考 复习 强效 提升 分数 精华版 二次 函数 应用 利润 问题