LINGO作业论文Word格式.docx
- 文档编号:16037162
- 上传时间:2022-11-17
- 格式:DOCX
- 页数:15
- 大小:270.14KB
LINGO作业论文Word格式.docx
《LINGO作业论文Word格式.docx》由会员分享,可在线阅读,更多相关《LINGO作业论文Word格式.docx(15页珍藏版)》请在冰豆网上搜索。
晶体管生产线、电路印刷与组装、晶体管与模块质量控制、电路集成器测试与包装。
生产中的要求如下:
生产一件晶体管需要占用晶体管生产线0.1h的时间,晶体管质量控制区域0.5h的时间,另加0.70元的直接成本;
生产一件微型模块需要占用质量控制区域0.4h的时间,消耗3个晶体管,另加0.5元的直接成本;
生产一件电路集成器需要占用电路印刷区域0.1h的时间,测试与包装区域0.5h的时间,消耗3个晶体管、3个微型模块,另加2.00元的直接成本。
假设三种产品(晶体管、微型模块、电路集成器)的销售量是没有限制的,销售价格分别为2元,8元,25元。
在未来的一个月里,每个加工区域均有200h的生产时间可用,请建立数学模型,帮助确定生产计划,使工厂的收益最大。
1.2问题分析
(1)问题梳理
已知一:
已知二:
生产一件微型模块需要占用质量控制区域0.4h的时间;
消耗3个晶体管,另加0.50元的直接成本;
已知三:
生产一件电路集成器需要占用电路印刷区域0.1h的时间,测试与包装区域0.5h的时间,消耗3个晶体管、3个微型模块,另加2.00元的直接成本;
已知四:
三种产品(晶体管、微型模块、电路集成器)的销售价格分别为2.0元,8元,25元。
已知五:
工厂分为四个加工区,每个加工区的时间限定为200h。
问题:
在规定的时间内,每种产品生产多少能给工厂带来最大利润?
(2)基本思路
总利润=总销售额-总成本=销量(单价-成本)
从总的销售额出发→各个销量→各个产量
需要注意的是生产一个微型模块的成本除了自身的直接成本外,还应该包括它所消耗的3个晶体管的成本。
同样,生产一个微型模块的时间,也应该将生产3个晶体管的时间考虑在内。
同理,计算生产电路集成器的成本和时间时也应该将它所消耗的别的产品的成本和时间考虑在内。
1.3数学模型
这是典型的线性规划(LP)问题,可设三种产品的销量分别为X,Y,Z,则由题意可得下表
销量
单个成本(¥)
单个时间(h)
生产区
质控区
印装区
测装区
晶体管
X
0.7
0.1
0.5
微型模块
Y
0.5+3*0.7=2.6
3*0.1=0.3
0.4+3*0.5=1.9
电路集成器
Z
2+3*(0.7+2.6)=11.9
3*(0.1+0.3)=1.2
3*(0.5+1.9)=7.2
目标函数:
Max=(2-0.7)*X+(8-2.6)*Y+(25-11.9)*Z;
约束条件:
0.1*X+0.3*Y+1.2*Z<
=200;
0.5*X+1.9*Y+7.2*Z<
0.1*X<
0.5*X<
1.4LINGO程序
(1)LINGO代码
X>
=0;
Y>
Z>
@gin(X);
@gin(Y);
@gin(Z);
(2)运算结果
1.5结果整理
销量(个)
产量(个)
最大利润(¥)
1
316
568.3
105
2路灯照明问题
2.1原题回顾
在一条20m宽的道路两侧,分别安装了一只2kW和一只3kW的路灯,它们离地面的高度分别为5m和6m。
在漆黑的夜晚,当两只路灯开启时,两只路灯连线的路面上最暗的点和最亮的点在哪里?
如果3kW的路灯的高度可以在3m到9m之间变化,如何使路面上最暗的点亮度最大?
如果两只路灯的高度均可以在3m到9m之间变化,结果又如何?
2.2问题分析
问题一:
两只路灯的高度固定,求两只路灯连线的路面上最暗的点和最亮的点在哪里?
问题二:
问题三:
某点的照度=路灯1在该点的照度+路灯2在该点的照度
当两个路灯在某点的照度之和取最小值时,该点最暗;
相反,当两个路灯在某点的照度之和取最大值时,该点最亮。
搞清这个逻辑以后,我们就可以建立数学模型,找到两个路灯在某点的照度之和的函数,然后求解该照度函数的最值即可。
2.3数学模型与解算过程
分别以2KW路灯和两只路灯连线为x轴、y轴,建立如下图直角坐标系
其中:
L1、L2:
分别表示2KW、3KW路灯;
P1、P2:
表示路灯功率;
h1、h2:
表示路灯的高度;
R1、R2:
表示路灯到地面连线上某点的距离;
、
:
表示路灯光线与地面夹角;
S:
表示路宽,这里可以认为是两路灯连线的地面距离;
X:
L1投射到地面某点的地面距离;
已知:
S=20m;
P1=2KW,P2=3KW;
路灯的光照强度
另设:
Q(X,0):
为两灯地面连线上的某一点;
I1、I2:
Q点接收到的分别来自两只路灯的光照强度,即
I(X):
Q点接收到的总的光照强度,I(X)=I1+I2;
假定两只路灯的光照强度系数都为K=1;
推算:
由图形可得如下关系
则Q(X,0)点接收到的总的光照强度为
2.3.1问题一:
(1)求解最亮点
(a)数学模型
目标函数:
;
h1=5;
h2=6;
X<
=20;
(b)LINGO程序
max=(2*h1)/(R1^3)+(3*h2)/(R2^3);
R1^2=h1^2+X^2;
R2^2=h2^2+(20-X)^2;
@bnd(0,X,20);
(c)运算结果
综上,X=19.97670m处最亮,I(X)=0.8447655E-01=0.0844766;
(2)求解最暗点
min=(2*h1)/(R1^3)+(3*h2)/(R2^3);
(c)运算结果
综上,X=9.338299m处最暗,I(X)=0.1824393E-01=0.0182439;
2.3.2问题二:
使最暗点亮度最大
h2>
=3;
h2<
=9;
X=9.338299;
@bnd(3,h2,9);
综上,X=9.338299,将h2调整到7.538963m,可以使路面上最暗的点亮度最大,I(X)=0.0185719;
2.3.3问题三
h1>
h1<
@bnd(3,h1,9);
综上,当h1=9m,h2=3m,X=19.99808m时,最亮,I(X)=0.33504;
综上,当h1=3m,h2=3m,X=9.435142m时,最暗,I(X)=0.0129767
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- LINGO 作业 论文