小学三年级奥数题及答案 1Word格式.docx
- 文档编号:15838879
- 上传时间:2022-11-16
- 格式:DOCX
- 页数:10
- 大小:23.70KB
小学三年级奥数题及答案 1Word格式.docx
《小学三年级奥数题及答案 1Word格式.docx》由会员分享,可在线阅读,更多相关《小学三年级奥数题及答案 1Word格式.docx(10页珍藏版)》请在冰豆网上搜索。
7.王老师把月收入的一半又20元留做生活费,又把剩余钱的一半又50元储蓄起来,这时还剩40元给孩子交学费书本费。
他这个月收入多少元?
[(40+50)×
2+20]×
2=400(元)答:
他这个月收入400元。
8.一个人沿着大提走了全长的一半后,又走了剩下的一半,还剩下1千米,问:
大提全长多少千米?
2×
2=4千米
9.甲在加工一批零件,第一天加工了这堆零件的一半又10个,第二天又加工了剩下的一半又10个,还剩下25个没有加工。
问:
这批零件有多少个?
(25+10)×
2=70个,(70+10)×
2=160个。
综合算式:
【(25+10)×
2+10】×
2=160个
10.一条毛毛虫由幼虫长到成虫,每天长一倍,16天能长到16厘米。
问它几天可以长到4厘米?
16÷
2÷
2=4(厘米),16-1-1=14(天)
11.一桶水,第一次倒出一半,然后倒回桶里30千克,第二次倒出桶中剩下水的一半,第三次倒出180千克,桶中还剩下80千克。
桶里原来有水多少千克?
180+80=260(千克),260×
2-30=490(千克),490×
2=980(千克)。
12.甲、乙两书架共有图书200本,甲书架的图书数比乙书架的3倍少16本。
甲、乙两书架上各有图书多少本?
答案:
乙:
(200+16)÷
(3+1)=54(本);
甲:
54×
3-16=146(本)。
13.小燕买一套衣服用去185元,问上衣和裤子各多少元?
裤子:
(185-5)÷
(2+1)=60(元);
上衣:
60×
2+5=125(元)。
14.甲、乙、丙三人年龄之和是94岁,且甲的2倍比丙多5岁,乙2倍比丙多19岁,问:
甲、乙、丙三人各多大?
如果每个人的年龄都扩大到2倍,那么三人年龄的和是94×
2=188。
如果甲再减少5岁,乙再减少19岁,那么三人的年龄的和是188-5-19=164(岁),这时甲的年龄是丙的一半,即丙的年龄是甲的两倍。
同样,这时丙的年龄也是乙两倍。
所以这时甲、乙的年龄都是164÷
(1+1+2)=41(岁),即原来丙的年龄是41岁。
甲原来的年龄是(41+5)÷
2=23(岁),乙原来的年龄是(41+19)÷
2=30(岁)。
15.小明、小华捉完鱼。
小明说:
“如果你把你捉的鱼给我1条,我的鱼就是你的2倍。
如果我给你1条,咱们就一样多了。
“请算出两个各捉了多少条鱼。
小明比小华多1×
2=2(条)。
如果小华给小明1条鱼,那么小明比小华多2+1×
2=4(条),这时小华有鱼4÷
(2-1)=4(条)。
原来小华有鱼4+1=5(条),原来小明有鱼5+2=7(条)。
16.小芳去文具店买了13本语文书,8本算术书,共用去10元。
已知6本语文本的价钱与4本算术本的价钱相等。
1本语文本、1本算术本各多少钱?
8÷
4×
6=12,即8本算术本与12本语文体价钱相等。
所以1本语文本值10×
100÷
(13+12)=40(分),1本算术本值40×
6÷
4=60(分),即1本语文本4角,1本算术本6角。
17.找规律,在括号内填入适当的数.75,3,74,3,73,3,(),()。
72,3。
18找规律,在括号内填入适当的数.1,4,5,4,9,4,(),()。
奇数项构成数列1,5,9……,每一项比前一项多4;
偶数项都是4,所以应填13,4
19.找规律,在括号内填入适当的数.3,2,6,2,12,2,(),()。
24,2。
20.找规律,在括号内填入适当的数.76,2,75,3,74,4,(),()。
将原数列拆分成两列,应填:
73,5。
21.找规律,在括号内填入适当的数.2,3,4,5,8,7,(),()。
16,9。
22.找规律,在括号内填入适当的数.3,6,8,16,18,(),()。
6=3×
2,16=8×
2,即偶数项是它前面的奇数项的2倍;
又8=6+2,18=16+2,即从第三项起,奇数项比它前面的偶数项多2.所以应填:
36,38。
23.找规律,在括号内填入适当的数.1,6,7,12,13,18,19,(),()。
24,25。
24.找规律,在括号内填入适当的数.1,4,3,8,5,12,7,()。
奇数项构成数列1,3,5,7,…,每一项比前一项多2;
偶数项构成数列4,8,12,…,每一项比前一项多4,所以应填:
16。
25.找规律,在括号内填入适当的数.0,1,3,8,21,55,(),()。
144,377。
26.A、B、C、D四人在一场比赛中得了前4名。
已知D的名次不是最高,但它比B、C都高,而C的名次也不比B高。
他们各是第几名?
D名次不是最高,但比B、C高,所以它是第2名,A是第1名。
C的名次不比B高,所以B是第3名,C是第4名。
27.一头象的重量等于4头牛的重量,一头牛的重量等于3匹小马的重量,一匹小马的重量等于3头小猪的重量。
一头象的重量等于几头小猪的重量?
3=36,所以一头象的重量等于36头小猪的重量。
28.甲、乙、丙三人,一个人喜欢看足球,一个人喜欢看拳击,一个人喜欢看篮球。
已知甲不爱看篮球,丙既不喜欢看篮球又不喜欢看足球。
现有足球、拳击、篮球比赛的入场券各一张。
请根据他们的爱好,把票分给他们。
丙不喜欢看篮球与足球,应将拳击入场券给丙。
甲不喜欢看篮球,应将足球入场券给甲。
最后,应将篮球入场券给乙。
29.有一堆铁块和铜块,每块铁块重量完全一样,每块铜块的重量也完全一样。
3块铁快和5块铜块共重210克。
4块铁块和10块铜块共重380克。
每一块铁块、每一块铜块各重多少?
4块铁块和10块铜块共重380克,所以2块铁块和5块铜块共重380÷
2=190(克)。
而3块铁块和5块铜块共重210克,所以1块铁块重210-190=20(克)。
1铜块重(190-20×
2)÷
5=30(克)。
30.甲、乙、丙三人中有一人做了一件好事。
他们各自都说了一句话,而其中只有一句是真的。
甲说:
“是乙做的。
”乙说:
“不是我做的。
”丙说:
“也不是我做的。
”问:
到底是谁做的好事?
如果是甲做的好事,那么乙、丙的话都是真的,与只有一句是真的矛盾。
如果是乙做的好事,那么甲、丙的话都是真的,也产生矛盾。
好事是丙做的,这时甲、丙的话都是错的,只有乙的话是真的,所以好事是丙做的。
31.一张长8分米、宽3分米的长方形纸板,在四个角落上各截去一个边长为2分米的正方形,所剩下的部分的周长是多少?
答:
(8+3)×
2=22(分米)
32.计算:
18+19+20+21+22+23
原式=(18+23)×
2=123
33.计算:
100+102+104+106+108+110+112+114
原式=(100+114)×
2=856
34.995+996+997+998+999
原式=(995+999)×
5÷
2=4985
35.:
(1999+1997+1995+…+13+11)-(12+14+16+…+1996+1998)
第一个括号内的项数为(1999-11)÷
2+1=995,所以原式=(1999-1998)+(1997-1996)+…+(13-12)+11=1×
994+11=1005
有7个数,它们的平均数是18。
去掉一个数后,剩下6个数的平均数是19;
再去掉一个数后,剩下的5个数的平均数是20。
求去掉的两个数的乘积。
解:
7*18-6*19=126-114=12
6*19-5*20=114-100=14
去掉的两个数是12和14它们的乘积是12*14=168
有七个排成一列的数,它们的平均数是30,前三个数的平均数是28,后五个数的平均数是33。
求第三个数。
28×
3+33×
5-30×
7=39。
有两组数,第一组9个数的和是63,第二组的平均数是11,两个组中所有数的平均数是8。
第二组有多少个数?
设第二组有x个数,则63+11x=8×
(9+x),解得x=3
1.甲、乙两班进行越野行军比赛,甲班以4.5千米/时的速度走了路程的一半,又以5.5千米/时的速度走完了另一半;
乙班在比赛过程中,一半时间以4.5千米/时的速度行进,另一半时间以5.5千米/时的速度行进。
甲、乙两班谁将获胜?
快速行走的路程越长,所用时间越短。
甲班快、慢速行走的路程相同,乙班快速行走的路程比慢速行走的路程长,所以乙班获胜。
2.轮船从A城到B城需行3天,而从B城到A城需行4天。
从A城放一个无动力的木筏,它漂到B城需多少天?
轮船顺流用3天,逆流用4天,说明轮船在静水中行4-3=1(天),等于水流3+4=7(天),即船速是流速的7倍。
所以轮船顺流行3天的路程等于水流3+3×
7=24(天)的路程,即木筏从A城漂到B城需24天。
3.小红和小强同时从家里出发相向而行。
小红每分走52米,小强每分走70米,二人在途中的A处相遇。
若小红提前4分出发,且速度不变,小强每分走90米,则两人仍在A处相遇。
小红和小强两人的家相距多少米?
因为小红的速度不变,相遇地点不变,所以小红两次从出发到相遇的时间相同。
也就是说,小强第二次比第一次少走4分。
由
(70×
4)÷
(90-70)=14(分)
可知,小强第二次走了14分,推知第一次走了18分,两人的家相距
(52+70)×
18=2196(米)。
4.小明和小军分别从甲、乙两地同时出发,相向而行。
若两人按原定速度前进,则4时相遇;
若两人各自都比原定速度多1千米/时,则3时相遇。
甲、乙两地相距多少千米?
每时多走1千米,两人3时共多走6千米,这6千米相当于两人按原定速度1时走的距离。
所以甲、乙两地相距6×
4=24(千米)
5.甲、乙两人沿400米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去。
相遇后甲比原来速度增加2米/秒,乙比原来速度减少2米/秒,结果都用24秒同时回到原地。
求甲原来的速度。
因为相遇前后甲、乙两人的速度和不变,相遇后两人合跑一圈用24秒,所以相遇前两人合跑一圈也用24秒,即24秒时两人相遇。
设甲原来每秒跑x米,则相遇后每秒跑(x+2)米。
因为甲在相遇前后各跑了24秒,共跑400米,所以有24x+24(x+2)=400,解得x=7又1/3米。
6.甲、乙两车分别沿公路从A,B两站同时相向而行,已知甲车的速度是乙车的1.5倍,甲、乙两车到达途中C站的时刻分别为5:
00和16:
00,两车相遇是什么时刻?
9∶24。
解:
甲车到达C站时,乙车还需16-5=11(时)才能到达C站。
乙车行11时的路程,两车相遇需11÷
(1+1.5)=4.4(时)=4时24分,所以相遇时刻是9∶24。
7.一列快车和一列慢车相向而行,快车的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 小学三年级奥数题及答案 小学 三年级 奥数题 答案