第二单元加减法的关系和加法运算律Word格式文档下载.docx
- 文档编号:15807116
- 上传时间:2022-11-16
- 格式:DOCX
- 页数:34
- 大小:55.55KB
第二单元加减法的关系和加法运算律Word格式文档下载.docx
《第二单元加减法的关系和加法运算律Word格式文档下载.docx》由会员分享,可在线阅读,更多相关《第二单元加减法的关系和加法运算律Word格式文档下载.docx(34页珍藏版)》请在冰豆网上搜索。
课时标题
第一课时:
多位数的认识
教学内容:
教材第28~29页的内容。
.
教学目标
1.通过对加减法应用题及加法的算理分析,理解加减的意义,能口述意义。
2.通过观察比较,知道减法是加法的逆运算。
会填加、减法算式中的未知数。
3.会把加法算式改写成减法算式,会把减法算式改写成两道加法和一道减法算式。
4.在探索新知识的过程中,培养学生认真思考,探索知识联系的态度,进一步培养学生抽象、概括能力。
教学重点
理解并掌握加减法内部各部分之间的关系。
教学难点
加减法之间的互逆运算。
学情分析
教学准备
课件
教学过程
复备
学
目标导学
一、情境引入
1.教师:
动物园里新运来一些熊猫,想去看看吗?
(生:
想)
2.课件出示教材第28页例题情境图。
教师:
请大家认真观察,从图上你获得了哪些数学信息?
学生1:
成年熊猫有17只。
学生2:
大熊猫宝宝有18只。
学生3:
一共有大熊猫35只。
从这些信息中,你能选择其中两条信息提出问题并解决吗?
成年熊猫有17只,大熊猫宝宝有18只,成年熊猫和大熊猫宝宝一共有多少只?
17+18=35(只)学生2:
一共有大熊猫35只,成年熊猫有17只,大熊猫宝宝有多少只?
35-17=18(只)
一共有大熊猫35只,大熊猫宝宝有18只,成年熊猫有多少只?
35-18=17(只)
学生说出每个算式,教师板书。
二、学习新知,理解关系
1.理解每道题里各部分的名称。
真不错,利用前面已学过的加减法的知识自己提出了这么多的问题,并能自己解决。
这些算式中各部分的名称叫什么,还记得吗?
在加法算式中,17,18叫加数,35叫和。
在减法算式中,35叫被减数,17在第一道算式里叫减数,在第二道算式里叫差;
18在第一道算式里叫差,在第二道算式里叫减数。
教师在生回答时板书各部分名称。
2.找出上题已知条件和问题的联系。
从整体上看这3个算式,有关系吗?
学生:
有
现在小组讨论,观察这3个算式有什么关系,你们能比较发现吗?
讨论后抽生汇报。
我们小组发现18在减法算式里是差或者减数,在加法算式里是加数。
我们发现一个加数等于和-另一个加数。
被减数=差+减数;
减数=被减数-差。
……
同学们观察得非常仔细,从不同的角度发现了这么多关系。
那从这些加法、减法算式中,你们认为加法与减法到底有怎样的关系呢?
加法和减法是相反的。
减法是加法的逆运算。
我们可以利用减法来验算加法是否算对了。
这就是我们今天学习的内容:
加减法的关系。
(板书课题)
三、巩固训练,掌握关系
1.基本训练。
教材第28页“课堂活动”第1题。
同桌两人一人说一道加法算式,另一人改写成两道减法算式。
2.填未知数。
教材第28页“课堂活动”第2题。
学生填数并说说是怎样想的。
3.完成教材第29页练习六第1~2题。
四、反思回顾,形成学法
今天学习了什么?
你是怎样学会的?
自主学习
合作互助
教
展示交流
总结提升
练
当堂测试
1、教科书第44页课堂活动第1题。
2、同桌的同学仿照第44页课堂活动第1题的形式相互出题练习。
3、教科书第44页课堂活动第2题。
(先想、再算、后交流我是根据什么来算的)
4、练习八的第1~3题。
板书
加减法的关系
加数加数和一个加数=和-另一个加数
17+18=35
被减数减数差被减数=差+减数
35-17=18减数=被减数-差
35-18=17减法是加法的逆运算
反思
第2课时:
加法交换律和结合律
教学内容:
教材第30~32页的内容。
1.理解和掌握加法交换律和结合律,懂得用字母表示数的意义。
2.探索并理解一个数加(或减)接近整百数的运算的灵活性。
3.培养学生观察、分析、比较、概括的能力,加强自觉运用定律的意识。
理解和掌握加法交换律和结合律并能应用它们进行简便计算。
懂得字母表示数的意义。
多媒体课件出示教材例1情境图。
森林王国举行智力大比拼,小松鼠参加了“开心口算”。
裁判长大象刚刚公布完比赛试题,小松鼠就跳着举起手,大声说:
“我算好了!
”参赛队员小狗疑惑不解地问:
“小松鼠,你怎么算得这么快呢?
”同学们,你们知道小松鼠算得快的原因吗?
通过今天的学习,你一定能找到答案。
(板书课题:
加法运算律)
二、互动新授
1.自主探究,促进迁移。
(1)算一算。
①让学生独立算出例1中算式的结果。
②指名汇报。
(教师操作课件在算式后面呈现结果)
(2)议一议。
问:
仔细观察这些算式,看看你发现了什么。
①独立观察。
②集体汇报、交流。
同一行的两个算式的和相等。
这两个加法算式加数一样,只是加数的位置不一样。
我发现在这些加法算式中,把加数的位置交换了,但是和不变。
追问:
谁能够用一句话把同学们的这些发现概括一下呢?
(任意两个加数相加,交换加数的位置,和不变。
)
教师说明:
同学们,刚才我们发现的这个规律叫做加法交换律。
其实聪明的小松鼠就是掌握了这一规律,才算得这么快。
(3)探究用字母表示数的方法。
如果我们用a和b分别代表两个加数,加法交换律可以怎样表示?
①学生独立思考,把表示方法写在答题纸上。
教师巡视,对于有困难的学生适时点拨。
②指名上前展示,并说说理由。
(a+b=b+a。
因为a和b分别代表两个加数,这两个数相加,加数的位置交换,但它们的和不变,因此这样表示。
教师小结:
加法交换律:
两个数相加,交换两个加数的位置,和不变。
这个规律叫做加法交换律。
用字母表示为:
a+b=b+a。
(教师板书:
a+b=b+a)
(4)试一试。
①学生独立完成教材第31页“课堂活动”第1题。
②集体交流、订正,并说说自己的想法。
(根据加法交换律:
2.小组合作,获取新知。
(1)出示教材例2的课件,师:
仔细观察情境图,说一说从中获得了哪些数学信息。
指名回答。
(已知:
一年级有114人,二年级有86人,三年级有89人。
问题:
3个年级共有学生多少人?
(2)探究解题方法。
要求3个年级共有学生多少人?
可以先求什么?
①小组讨论,并列出算式。
②小组代表展示小组讨论结果,说说解题思路。
先求二年级和三年级一共有多少人,然后再求3个年级一共有多少人。
列式为:
(89+86)+114=175+114=289(人)。
先求一年级和二年级一共有多少人,再求3个年级一共有多少人。
89+(86+114)=89+200=289(人)。
依次把3个年级的人数加起来,然后按照从左往右的顺序进行计算得出3个年级一共有多少人。
114+86+89=200+89=289(人)。
小结:
我们在解决问题的时候,可以多方位思考,用不同的方法解决。
(3)算一算。
下面请大家再来计算这样几个式子:
(153+315)+85,153+(315+85)。
(课件出示题目)
学生计算,集体订正。
教师板书:
(153+315)+85
=468+85
=553
153+(315+85)
=153+400
(4)引导归纳。
请同学们认真观察这两组算式,说说你发现了什么。
①学生观察、思考。
②集体汇报。
(发现:
这两组算式中的加数相同,在计算的时候我们可以把前两个数相加再加第三个数,也可以先把后两个数相加再加第一个数,和是相等的。
3个数相加,先把前两个数相加,再加第3个数;
或先把后两个数相加,再加第1个数,和不变。
这就是加法结合律。
如果用字母a,b,c表示三个加数,谁能用字母来表示一下加法结合律呢?
先让学生独立在答题纸上用字母来表示加法结合律,然后展示交流。
(a+b)+c=a+(b+c)
3.合作交流,共同提高。
(1)多媒体课件出示教材第31页例3。
(小学生为残疾儿童捐款的情境图)
请大家认真读题,说一说从中你获得了哪些数学信息。
(已知的条件:
1班捐款113元,2班捐款96元,3班捐款87元。
要求的问题:
3个班共为残疾儿童捐款多少元?
(2)解决问题。
①学生独立列出算式,并进行解答。
教师巡视,留意学生不同的计算方法。
算法1:
113+96+87
=209+87
=296(元)算式2:
=113+87+96
=200+96
=296(元)
(3)讨论:
上面两种计算方法,你觉得哪一种比较简便,并说明理由。
①小组进行交流、讨论。
[第二种计算方法比较简便。
运用了加法结合律先把第1个和第3个加数相加,然后再和第2个加数相加,这样在计算的过程中(113+87=200)凑成了整百数使得计算比第一种算法简便了。
]
说明:
在第二种计算过程中我们用到了加法结合律的同时也用到了加法交换律,即先交换第2和第3个加数的位置,然后再让第1和第3个加数结合。
通过刚才大家的观察比较,我们发现运用加法交换律和结合律能使计算简便。
我们在进行加法计算的过程中要学会运用加法的运算定律进行计算使计算简便。
在运用的过程中还要注意的是,如果能够像这道题一样,其中的两个加数相结合能够凑成整百数或者是接
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第二单元 加减法的关系和加法运算律 第二 单元 加减法 关系 加法 运算