acm 竞赛题知识点总结Word文档格式.docx
- 文档编号:15690614
- 上传时间:2022-11-15
- 格式:DOCX
- 页数:10
- 大小:262.28KB
acm 竞赛题知识点总结Word文档格式.docx
《acm 竞赛题知识点总结Word文档格式.docx》由会员分享,可在线阅读,更多相关《acm 竞赛题知识点总结Word文档格式.docx(10页珍藏版)》请在冰豆网上搜索。
cout<
<
d[99%3]<
endl;
//Fibonacci...
return0;
}
inti,,j,d[2][100];
//比d[100][100]省多了
for(i=1;
i<
100;
i++)
for(j=0;
j<
j++)
d[i%2][j]=d[(i-1)%2][j]+d[i%2][j-1];
//DP....
滚动数组举个简单的例子:
inti,d[100];
d[0]=1;
d[1]=1;
for(i=2;
d[i]=d[i-1]+d[i-2];
printf("
%d"
d[99]);
上面这个循环d[i]只需要解集中的前2个解d[i-1]和d[i-2];
为了节约空间用滚动数组的方法
d[i%3]=d[(i-1)%3]+d[(i-2)%3];
d[99%3]);
注意上面的运算,我们只留了最近的3个解,数组好象在“滚动‿一样,所以叫滚动数组
对于二维数组也可以用这种方法例如:
inti,j,d[100][100];
d[i][j]=d[i-1][j]+d[i][j-1];
上鿢的d[i][j]忪便赖于d[i-1][j],d[i][j-1];
迿用滚动数组
滚动数组实际是一种节约空间的办法,时间上没什么优势,多用于DP中,举个例子先:
一个DP,平常如果需要1000×
1000的空间,其实根据DP的特点,能以2×
1000的空间解决问题,并且通过滚动,获得和1000×
1000一样的效果。
背包问题
这是最基础的背包问题,特点是:
每种物品仅有一件,可以选择放或不放。
用子问题定义状态:
即f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。
则其状态转移方程便是:
f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}
这个方程非常重要,基本上所有跟背包相关的问题的方程都是由它衍生出来的。
所以有必要将它详细解释一下:
“将前i件物品放入容量为v的背包中”这个子问题,若只考虑第i件物品的策略(放或不放),那么就可以转化为一个只牵扯前i-1件物品的问题。
如果不放第i件物品,那么问题就转化为“前i-1件物品放入容量为v的背包中”,价值为f[i-1][v];
如果放第i件物品,那么问题就转化为“前i-1件物品放入剩下的容量为v-c[i]的背包中”,此时能获得的最大价值就是f[i-1][v-c[i]]再加上通过放入第i件物品获得的价值w[i]。
优化空间复杂度
以上方法的时间和空间复杂度均为O(VN),其中时间复杂度应该已经不能再优化了,但空间复杂度却可以优化到O。
先考虑上面讲的基本思路如何实现,肯定是有一个主循环i=1..N,每次算出来二维数组f[i][0..V]的所有值。
那么,如果只用一个数组f[0..V],能不能保证第i次循环结束后f[v]中表示的就是我们定义的状态f[i][v]呢?
f[i][v]是由f[i-1][v]和f[i-1][v-c[i]]两个子问题递推而来,能否保证在推f[i][v]时(也即在第i次主循环中推f[v]时)能够得到f[i-1][v]和f[i-1][v-c[i]]的值呢?
事实上,这要求在每次主循环中我们以v=V..0的顺序推f[v],这样才能保证推f[v]时f[v-c[i]]保存的是状态f[i-1][v-c[i]]的值。
伪代码如下:
fori=1..N
forv=V..0
f[v]=max{f[v],f[v-c[i]]+w[i]};
其中的f[v]=max{f[v],f[v-c[i]]}一句恰就相当于我们的转移方程f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]},因为现在的f[v-c[i]]就相当于原来的f[i-1][v-c[i]]。
如果将v的循环顺序从上面的逆序改成顺序的话,那么则成了f[i][v]由f[i][v-c[i]]推知,与本题意不符,但它却是另一个重要的背包问题P02最简捷的解决方案,故学习只用一维数组解01背包问题是十分必要的。
AC自动机
首先简要介绍一下AC自动机:
Aho-Corasickautomation,该算法在1975年产生于贝尔实验室,是著名的多模匹配算法之一。
一个常见的例子就是给出n个单词,再给出一段包含m个字符的文章,让你找出有多少个单词在文章里出现过。
要搞懂AC自动机,先得有模式树(字典树)Trie和KMP模式匹配算法的基础知识。
AC自动机算法分为3步:
构造一棵Trie树,构造失败指针和模式匹配过程。
如果你对KMP算法和了解的话,应该知道KMP算法中的next函数(shift函数或者fail函数)是干什么用的。
KMP中我们用两个指针i和j分别表示,A[i-j+1..i]与B[1..j]完全相等。
也就是说,i是不断增加的,随着i的增加j相应地变化,且j满足以A[i]结尾的长度为j的字符串正好匹配B串的前j个字符,当A[i+1]≠B[j+1],KMP的策略是调整j的位置(减小j值)使得A[i-j+1..i]与B[1..j]保持匹配且新的B[j+1]恰好与A[i+1]匹配,而next函数恰恰记录了这个j应该调整到的位置。
同样AC自动机的失败指针具有同样的功能,也就是说当我们的模式串在Tire上进行匹配时,如果与当前节点的关键字不能继续匹配的时候,就应该去当前节点的失败指针所指向的节点继续进行匹配。
看下面这个例子:
给定5个单词:
say
she
shr
he
her,然后给定一个字符串yasherhs。
问一共有多少单词在这个字符串中出现过。
我们先规定一下AC自动机所需要的一些数据结构,方便接下去的编程。
1
const
int
kind
=
26;
2
struct
node{
3
node
*fail;
//失败指针
4
*next[kind];
//Tire每个节点的个子节点(最多个字母)
5
count;
//是否为该单词的最后一个节点
6
node(){
//构造函数初始化
7
fail=NULL;
8
count=0;
9
memset(next,NULL,sizeof(next));
10
}
11
}*q[500001];
//队列,方便用于bfs构造失败指针
12
char
keyword[51];
//输入的单词
13
str[1000001];
//模式串
14
head,tail;
//队列的头尾指针
有了这些数据结构之后,就可以开始编程了:
首先,将这5个单词构造成一棵Tire,如图-1所示。
void
insert(char
*str,node
*root){
*p=root;
i=0,index;
while(str[i]){
index=str[i]-'
a'
;
if(p->
next[index]==NULL)
p->
next[index]=new
node();
p=p->
next[index];
i++;
count++;
//在单词的最后一个节点count+1,代表一个单词
在构造完这棵Tire之后,接下去的工作就是构造下失败指针。
构造失败指针的过程概括起来就一句话:
设这个节点上的字母为C,沿着他父亲的失败指针走,直到走到一个节点,他的儿子中也有字母为C的节点。
然后把当前节点的失败指针指向那个字母也为C的儿子。
如果一直走到了root都没找到,那就把失败指针指向root。
具体操作起来只需要:
先把root加入队列(root的失败指针指向自己或者NULL),这以后我们每处理一个点,就把它的所有儿子加入队列,队列为空。
build_ac_automation(node
*root){
int
i;
root->
q[head++]=root;
while(head!
=tail){
*temp=q[tail++];
*p=NULL;
for(i=0;
i++){
if(temp->
next[i]!
=NULL){
if(temp==root)
temp->
next[i]->
fail=root;
else{
p=temp->
fail;
while(p!
15
fail=p->
next[i];
16
break;
17
18
19
20
if(p==NULL)
21
22
q[head++]=temp->
23
24
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- acm 竞赛题知识点总结 竞赛题 知识点 总结