《复数代数形式的四则运算》pptPPT推荐.ppt
- 文档编号:15630621
- 上传时间:2022-11-09
- 格式:PPT
- 页数:18
- 大小:379KB
《复数代数形式的四则运算》pptPPT推荐.ppt
《《复数代数形式的四则运算》pptPPT推荐.ppt》由会员分享,可在线阅读,更多相关《《复数代数形式的四则运算》pptPPT推荐.ppt(18页珍藏版)》请在冰豆网上搜索。
形如形如aa+bibi(a,ba,bR)R)的数叫做复数的数叫做复数.全体复数所形成的集合叫做全体复数所形成的集合叫做复数复数集集,一般用字母,一般用字母CC表示表示.复习:
复习:
实部实部实部实部复数的代数形式:
复数的代数形式:
通常用字母通常用字母z表示,即表示,即虚部虚部虚部虚部其中其中称为称为虚数单位虚数单位。
复数集复数集CC和实数集和实数集RR之间有什么关系?
之间有什么关系?
讨论讨论?
复数复数a+bia+bi如果两个复数的如果两个复数的实部实部和和虚部虚部分别相分别相等,那么我们就说这等,那么我们就说这两个复数相等两个复数相等特别地,特别地,a+bia+bi=0=0.a=b=0a=b=0必要不充分条件必要不充分条件问题:
问题:
a=0a=0是是z=a+bi(az=a+bi(a、bbR)R)为为纯虚数的纯虚数的注意注意:
一般地一般地,两个复数只能说相等两个复数只能说相等或不相等或不相等,而不能比较大小而不能比较大小.思考思考:
对于任意的两个复数到底能否对于任意的两个复数到底能否比较大小比较大小?
答案答案:
当且仅当两个复数都是实数当且仅当两个复数都是实数时时,才能比较大小才能比较大小.1.复数加减法的运算法则:
复数加减法的运算法则:
(1)
(1)运算法则运算法则:
设复数设复数zz11=a+bi,z=a+bi,z22=c+di,=c+di,那么:
那么:
zz11+z+z22=(a+c)+(b+d)i=(a+c)+(b+d)i;
zz11-z-z22=(a-c)+(b-d)i=(a-c)+(b-d)i.即即:
两个复数相加两个复数相加(减减)就是实部与就是实部与实部实部,虚部与虚部分虚部与虚部分别相加别相加(减减).).
(2)
(2)复数的加法满足复数的加法满足交换律交换律、结合律结合律,即对任何即对任何zz11,z,z22,z,z33C,C,有有zz11+z+z22=z=z22+z+z11,(z(z11+z+z22)+z)+z33=z=z11+(z+(z22+z+z33).).例例1.1.计算计算解解:
2.复数的乘法与除法复数的乘法与除法
(1)
(1)复数乘法的法则复数乘法的法则复数的乘法与多项式的乘法是类似复数的乘法与多项式的乘法是类似的的,但必须在所得的结果中把但必须在所得的结果中把ii22换成换成-1,-1,并且把实部合并并且把实部合并.即即:
(a+bi)(c+di)=ac+bci+adi+bdi(a+bi)(c+di)=ac+bci+adi+bdi22=(ac-bd)+(bc+ad)i.
(2)
(2)复数乘法的运算定理复数乘法的运算定理复数的乘法满足复数的乘法满足交换律交换律、结合律结合律以以及乘法对加法的及乘法对加法的分配律分配律.即对任何即对任何zz11,z,z22,z,z33有有zz11zz22=z=z22zz11;
(z(z11zz22)z)z33=z=z11(z(z22zz33);
);
zz11(z(z22+z+z33)=z)=z11zz22+z+z11zz33.例例22:
计算:
计算(3)(3)复数的除法法则复数的除法法则先把除式写成分式的形式先把除式写成分式的形式,再把分子再把分子与分母都乘以分母的共轭复数与分母都乘以分母的共轭复数,化简后化简后写成代数形式写成代数形式(分母实数化分母实数化).).即即分母实数化分母实数化例例3.3.计算计算解解:
(11)已知已知求求练练习习(22)已知)已知求求(33)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 复数代数形式的四则运算 复数 代数 形式 四则运算 ppt