用列举法求概率(1)课件PPT文档格式.ppt
- 文档编号:15601728
- 上传时间:2022-11-07
- 格式:PPT
- 页数:18
- 大小:1.67MB
用列举法求概率(1)课件PPT文档格式.ppt
《用列举法求概率(1)课件PPT文档格式.ppt》由会员分享,可在线阅读,更多相关《用列举法求概率(1)课件PPT文档格式.ppt(18页珍藏版)》请在冰豆网上搜索。
求等可能性事件的概率求等可能性事件的概率-列举法列举法问题:
利用分类列举法可知事件发生的各问题:
利用分类列举法可知事件发生的各种情况,对于列举较复杂事件的发生情况还种情况,对于列举较复杂事件的发生情况还有什么更好的方法呢?
有什么更好的方法呢?
例例5.5.同时掷两个质地均匀的骰子,计算下列同时掷两个质地均匀的骰子,计算下列事件的概率:
事件的概率:
(11)两个骰子的点数相同)两个骰子的点数相同;
(22)两个骰子点数的和是)两个骰子点数的和是99;
(33)至少有一个骰子的点数为)至少有一个骰子的点数为22。
分析:
当一次试验要涉及两个因素(例如掷两个分析:
当一次试验要涉及两个因素(例如掷两个骰子)并且可能出现的结果数目较多时,为不重骰子)并且可能出现的结果数目较多时,为不重不漏地列出所有可能结果,通常采用不漏地列出所有可能结果,通常采用。
把两个骰子分别标记为第把两个骰子分别标记为第11个和第个和第22个,列表如下:
个,列表如下:
列表法列表法解:
由表可看出,同时投掷两个骰子,可能解:
由表可看出,同时投掷两个骰子,可能出现的结果有出现的结果有出现的结果有出现的结果有36363636个,它们出现的个,它们出现的个,它们出现的个,它们出现的可能性相等可能性相等可能性相等可能性相等。
(1111)满足两个骰子点数相同(记为事件)满足两个骰子点数相同(记为事件)满足两个骰子点数相同(记为事件)满足两个骰子点数相同(记为事件AAAA)的结果有)的结果有)的结果有)的结果有6666个个个个(2222)满足两个骰子点数和为)满足两个骰子点数和为)满足两个骰子点数和为)满足两个骰子点数和为9999(记为事件(记为事件(记为事件(记为事件BBBB)的结果有)的结果有)的结果有)的结果有4444个个个个(3333)满足至少有一个骰子的点数为)满足至少有一个骰子的点数为)满足至少有一个骰子的点数为)满足至少有一个骰子的点数为2222(记为事件(记为事件(记为事件(记为事件CCCC)的结果有)的结果有)的结果有)的结果有11111111个。
个。
如果把例如果把例55中的中的“同时掷两个骰子同时掷两个骰子”改为改为“把一个骰子掷两次把一个骰子掷两次”,所得的结果有变化所得的结果有变化吗吗?
没有变化没有变化这个游戏对小亮和小明公这个游戏对小亮和小明公平吗?
平吗?
小明和小亮做扑克游戏,桌面上放有两堆牌小明和小亮做扑克游戏,桌面上放有两堆牌小明和小亮做扑克游戏,桌面上放有两堆牌小明和小亮做扑克游戏,桌面上放有两堆牌,分分分分别是红桃和黑桃的别是红桃和黑桃的别是红桃和黑桃的别是红桃和黑桃的1,2,3,4,5,6,1,2,3,4,5,6,1,2,3,4,5,6,1,2,3,4,5,6,小明建议小明建议小明建议小明建议:
我从红桃我从红桃我从红桃我从红桃中抽取一张牌中抽取一张牌中抽取一张牌中抽取一张牌,你从黑桃中取一张你从黑桃中取一张你从黑桃中取一张你从黑桃中取一张,当两张牌数字当两张牌数字当两张牌数字当两张牌数字之积为奇数时,你得之积为奇数时,你得之积为奇数时,你得之积为奇数时,你得1111分,为偶数我得分,为偶数我得分,为偶数我得分,为偶数我得1111分分分分,先得先得先得先得到到到到10101010分的获胜分的获胜分的获胜分的获胜”。
如果你是小亮如果你是小亮如果你是小亮如果你是小亮,你愿意接受这你愿意接受这你愿意接受这你愿意接受这个游戏的规则吗个游戏的规则吗个游戏的规则吗个游戏的规则吗?
思考思考:
你能求出小亮得分的概率吗你能求出小亮得分的概率吗?
123456123456红桃红桃红桃红桃黑桃黑桃黑桃黑桃w用表格表示用表格表示(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)(5,1)(5,2)(5,3)(5,4)(5,5)(5,6)(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)(5,1)(5,2)(5,3)(5,4)(5,5)(5,6)(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)总结经验总结经验:
当一次试验要涉及两个因素当一次试验要涉及两个因素,并且可能出并且可能出现的结果数目较多时现的结果数目较多时,为了不重不漏的列为了不重不漏的列出所有可能的结果出所有可能的结果,通常采用通常采用列表的办法列表的办法解解:
由表中可以看出由表中可以看出,在两堆牌中分别取一张在两堆牌中分别取一张,它可它可能出现的结果有能出现的结果有36个个,它们出现的可能性相等它们出现的可能性相等满足两张牌的数字之积为奇数满足两张牌的数字之积为奇数(记为事件记为事件A)的有的有(1,1)(1,3)(1,5)(3,1)(3,3)(3,5)(5,1)(5,3)(5,5)这这9种情况种情况,所以所以P(A)=随堂练习随堂练习(基础练习)(基础练习)11、一个袋子中装有、一个袋子中装有22个红球和个红球和22个绿球个绿球,任意摸出一任意摸出一球球,记录颜色放回记录颜色放回,再任意摸出一球再任意摸出一球,记录颜色放回记录颜色放回,请请你估计两次都摸到红球的概率是你估计两次都摸到红球的概率是_。
22、某人有红、白、蓝三件衬衫和红、白、蓝三条、某人有红、白、蓝三件衬衫和红、白、蓝三条长裤,该人任意拿一件衬衫和一条长裤,求正好长裤,该人任意拿一件衬衫和一条长裤,求正好是一套白色的概率是一套白色的概率_。
33、在、在66张卡片上分别写有张卡片上分别写有1166的整数的整数,随机的抽取随机的抽取一张后放回一张后放回,再随机的抽取一张,那么再随机的抽取一张,那么,第一次取出第一次取出的数字能够整除第的数字能够整除第22次取出的数字的概率是多少次取出的数字的概率是多少?
解:
将两次抽取卡片记为第解:
将两次抽取卡片记为第11个和第个和第个和第个和第22个,用表格列出所有可个,用表格列出所有可个,用表格列出所有可个,用表格列出所有可能出现的情况,如图所示,共有能出现的情况,如图所示,共有能出现的情况,如图所示,共有能出现的情况,如图所示,共有3636种情况。
种情况。
则将第则将第则将第则将第11个数字能整除第个数字能整除第个数字能整除第个数字能整除第22个数字事件记为事件个数字事件记为事件个数字事件记为事件个数字事件记为事件AA,满足情况的有(,满足情况的有(,满足情况的有(,满足情况的有(11,11),),),),(11,22),(),(),(),(22,22),(),(),(),(11,33),(),(),(),(33,33),(),(),(),(11,44),(),(),(),(22,44),),),),(44,44),(),(),(),(11,55),(),(),(),(55,55),(),(),(),(11,66)()()()(22,66),(),(),(),(33,66),(),(),(),(66,66)。
)。
要要“玩玩”出水平出水平“配配紫色紫色”游戏游戏小颖为学校联欢会设计了一个小颖为学校联欢会设计了一个小颖为学校联欢会设计了一个小颖为学校联欢会设计了一个“配紫色配紫色配紫色配紫色”游戏游戏游戏游戏:
下面是两下面是两下面是两下面是两个可以自由转动的转盘个可以自由转动的转盘个可以自由转动的转盘个可以自由转动的转盘,每个转盘被分成相等的几个扇形每个转盘被分成相等的几个扇形每个转盘被分成相等的几个扇形每个转盘被分成相等的几个扇形.游戏规则是游戏规则是游戏规则是游戏规则是:
游戏者同时转动两个转盘游戏者同时转动两个转盘游戏者同时转动两个转盘游戏者同时转动两个转盘,如果转盘如果转盘如果转盘如果转盘AAAA转出了转出了转出了转出了红色红色红色红色,转盘转盘转盘转盘BBBB转出了蓝色转出了蓝色转出了蓝色转出了蓝色,那么他就赢了那么他就赢了那么他就赢了那么他就赢了,因为红色和蓝色在因为红色和蓝色在因为红色和蓝色在因为红色和蓝色在一起配成了一起配成了一起配成了一起配成了紫色紫色紫色紫色.
(1)
(1)
(1)
(1)利用列表的方法表利用列表的方法表利用列表的方法表利用列表的方法表示游戏者所有可能出示游戏者所有可能出示游戏者所有可能出示游戏者所有可能出现的结果现的结果现的结果现的结果.
(2)
(2)
(2)
(2)游戏者获胜的概率游戏者获胜的概率游戏者获胜的概率游戏者获胜的概率是多少是多少是多少是多少?
红白黄蓝绿A盘B盘真知灼见真知灼见源于实践源于实践表格可以是:
表格可以是:
“配配紫色紫色”游戏游戏游戏者获胜的概率是游戏者获胜的概率是游戏者获胜的概率是游戏者获胜的概率是1/6.1/6.1/6.1/6.第二个第二个第二个第二个转盘转盘转盘转盘第一个第一个第一个第一个转盘转盘转盘转盘黄蓝绿红(红,黄)(红,蓝)(红,绿)白(白,黄)(白,蓝)(白,绿)行家看行家看“门道门道”如图如图如图如图,袋中装有两个完全相同的球袋中装有两个完全相同的球袋中装有两个完全相同的球袋中装有两个完全相同的球,分别标有数字分别标有数字分别标有数字分别标有数字“1111”和和和和“2222”.小明设计了一个游戏小明设计了一个游戏小明设计了一个游戏小明设计了一个游戏:
游戏者每次从袋中随机摸出游戏者每次从袋中随机摸出游戏者每次从袋中随机摸出游戏者每次从袋中随机摸出一个球一个球一个球一个球,并自由转动图中的转盘并自由转动图中的转盘并自由转动图中的转盘并自由转动图中的转盘(转盘被分成相等的三个转盘被分成相等的三个转盘被分成相等的三个转盘被分成相等的三个扇形扇形扇形扇形).).).).游戏规则是游戏规则是:
如果所摸球上的数字与转盘转出的数字之和为如果所摸球上的数字与转盘转出的数字之和为2,2,那么游戏者获胜那么游戏者获胜.求游戏者获胜的概率求游戏者获胜的概率.用心领用心领“悟悟”123解解:
每次游戏时每次游戏时,所有可能出现的结果如下所有可能出现的结果如下:
游戏者获胜的概率为游戏者获胜的概率为游戏者获胜的概率为游戏者获胜的概率为1/6.1/6.1/6.1/6.转盘摸球112(1,1)(1,2)2(2,1)(2,2)3(1,3)(2,3)11、现有两组电灯,每一组中各有红、黄、蓝、现有两组电灯,每一组中各有红、黄、蓝、绿四盏灯,各组中的灯均为并联,两组等同时绿四盏灯,各组中的灯均为并联,两组等同时只能各亮一盏,求同时亮红灯的概率。
只能各亮一盏,求同时亮红灯的概率。
(红,红)(红,红)(黄,红)(黄,红)(蓝,红)(蓝,红)(绿,红)(绿,红)(红,黄)(红,黄)(黄,黄)(黄,黄)(蓝,黄)(蓝,黄)(绿,黄)(绿,黄)(红,蓝)(红,蓝)(黄,蓝)(黄,蓝)(蓝,蓝)(蓝,蓝)(绿,蓝)(绿,蓝)(红,绿)(红,绿)(黄,绿)(黄,绿)(蓝,绿)(蓝,绿)(绿,绿)(绿,绿)将所有可能出现的情况列表如下:
将所有可能出现的情况列表如下:
2222、染色体隐性遗传病,只有致病基因在纯合状态、染色体隐性遗传病,只有致病基因在纯合
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 列举 概率 课件