数据拟合文献综述Word下载.docx
- 文档编号:15537991
- 上传时间:2022-11-03
- 格式:DOCX
- 页数:10
- 大小:252.73KB
数据拟合文献综述Word下载.docx
《数据拟合文献综述Word下载.docx》由会员分享,可在线阅读,更多相关《数据拟合文献综述Word下载.docx(10页珍藏版)》请在冰豆网上搜索。
在这种情况下,通常要求观测数据相对比较准确,即不考虑观测误差的影响。
所以,可以通过比如采样、实验等方法而得到若干的离散的数据,根据这些离散的数据,我们往往希望能得到一个连续函数(也就是曲线)或者更加密集的离散方程与已知数据相吻合。
这个过程叫做拟合。
也就是说,如果数据不能满足某一个特定的函数的时候,而要求我们所要求的逼近函数“最优的”靠近那些数据点,按照误差最小的原则为最优标准来构造出函数。
我们称这个函数为拟合函数。
2.1.1国内外研究现状
在通过对国内外有关的学术刊物、国际国内有关学术会议和网站的论文进行参阅。
数据拟合的研究和应用主要是面对各种工程问题,有着系统的研究和很大的发展。
通过研究发展使得数据拟合有着一定的理论研究基础。
尤其是关于数据拟合基本的方法最小二乘法的研究有着各种研究成果。
但是,由于现实问题的复杂性,数据拟合还拥有很好的研究空间,还有很多能够优化和创新的问题需要去研究和探索。
各种算法的改进和应用以及如何得到合适的模型一直是一个比较热门的研究领域。
例如,国内外文献里提出了很多基于形状的描述方法,比如傅氏描述子法、多边形法、累积角法等,其中以二次曲线和超二次曲线来拟合物体的边界形状并进行物体的描述已获得广泛应用。
现在,我们应用高次隐式多项式曲线来作为物体的几何模型受到广泛的重视。
2.1.2研究的意义
归纳总结数据拟合理论在实际中的应用,发掘各个数据拟合算法的在实际应用中的应用范围适用性。
通过对本项目的研究和分析,使得实际中的工程问题根据不同的需求使用最合适的拟合算法,从而提高拟合的精确度。
研究和发展数据拟合理论,发掘各种数据拟合的优化方案。
根据离散的数据,我们想要得到连续的函数或更加密集的离散方程与已知数据相吻合。
如何选择数学模型,如何减小误差,如何使得逼近函数图像最靠近那些数据点,使得优化拟合算法变得十分重要。
2.2研究主要成果
最小二乘法为数据拟合的最基本也是应用最广泛的方法,最小二乘法有了很大的发展。
在实际应用和实验中,我们经常采用实验的方法寻找变量间的相互关系。
但是,当观测到的数据较多时,一般情况下使用插值多项式来求近似函数是不现实的。
根据多元函数线性回归理论,使用曲线拟合最小二乘法来寻求变量之间的函数关系能够很好的解决这个问题。
而且我们对它在实际应用中产生各方面的需求有着各种研究。
例如:
基于于均差最小二乘拟合方程形式的研究、数据拟合函数的最小二乘积分法、非线性最小二乘法等各种方法已经在工程中得到了应用。
所谓数据拟合的最小二乘法是一种数学优化的技术,它通过最小化误差的平方和寻找数据的最佳函数匹配,并使得这些求得的数据与实际数据之间误差(残差)的平方和为最小。
为了使问题的提法更具有一般性,通常把最小二乘法中的误差(残差)平方和都考虑为加权平方和。
最后为了使误差的加权平方和最小,会转化为求多元函数的极小点的问题。
其有关概念与方法可以推广到多元函数拟合之中。
最小二乘法在运筹学、统计学、逼近论和控制论中,是很重要的求解方法。
例如,它在统计学之中是估计回归参数最基本的方法。
在实际问题中,如何由测量的离散数据设计和确定最优的拟合曲线?
其关键在于选择适当类型的拟合曲线,一些时候根据专业的知识和我们的经验就可以确定拟合曲线类型;
但是当我们在对拟合曲线一无所知的情况下,可以先绘制离散数据的粗略图形,也许能够从中观测出拟合曲线的类型;
或者对数据进行多种可能较好的曲线类型的拟合,并且计算出它们的均方误差,利用数学实验的方法找出最小二乘法意义下误差最小的拟合函数。
在离散数据的最小二乘法中,最简单、最常用的数学模型是多项式拟合。
另外,近年来对高次隐式多项式曲线来作为物体的几何模型也受到广泛的重视,用隐式多项式曲线来描述数据点集合的轮廓也有了初步的比较系统的研究。
随着数据拟合的广泛应用出现了许多可以进行拟合的应用软件。
OriginPro,Matlab,SAS,SPSS,DataFit,GraphPad,TableCurve2D,TableCurve3D,Mathematica等其功能都十分优秀。
他们还具有自动选择数学模型的功能。
2.3最小二乘曲线拟合
对于已知的m+1的离散数据和权数,记
在连续函数空间C[a,b]中选定n+1个线性无关的基函数,并记由它们生成的子空间。
如果存在
(2-1)
使得
(2-2)
则称为离散数据在子空间中带权的最小二乘拟合。
函数在离散点处的值为
(2-3)
因此,(2-2)右边的和式是参数的函数,记作
(2-4)
这样,求极小值问题(2-2)的解,就是求多元二次函数的极小点使得
(2-5)
由求多元函数极值的必要条件
(2-6)
若记
(2-7)
(2-8)
上式可改写为
(2-9)
这个方程称为法方程,可写成矩阵形式
(2-10)
其中
(2-11)
(2-12)
由于线性无关,故|G|≠0,方程(2-9)存在唯一的解
(2-13)
从而得到函数f(x)的最小二乘解为
(2-14)
可以证明,这样得到的,对于任何,都有
(2-15)
故是所求的最小二乘解。
记,显然,平方误差或均方误差越小,拟合的效果越好。
2.3.1多项式拟合
前面讨论了子空间Φ中的最小二乘拟合。
这是一种线性的拟合模型。
在离散数据最小二乘拟合中,最简单、最常用的数学模型是多项式。
为了确定数据拟合问题,我们选用作为函数类,有
(2-16)
这就是多项式拟合函数。
为了确定拟合函数的系数,需要求解正规方程组
(2-17)
也可以用矩阵形式表示为
(2-18)
解得即可,将其代入(2-16)即可得到拟合多项式。
2.3.2正交多项式作最小二乘拟合的原理
用一般的最小二乘法拟合时其法方程的系数矩阵G是病态的,但如果用正交多项式拟合可以不通过求法方程来确定,显然拟合的效果较好。
即如果是关于点集的带权正交的函数族,有
(2-19)
则方程组(2-9)的解为
(2-20)
且平方误差为
(2-21)
根据已知的节点及权函数先构造带权正交的多项式。
用递推的公式表示:
(2-22)
这里是首项系数为1的k次多项式。
根据的正交性得:
(2-23)
用正交多项式的线性组合作最小二次拟合,只要在逐步求的同时,相应计算出系数
(2-24)
并逐步把累加到中去,最后即可得所求拟合曲线
(2-25)
这里的n可以是事先给定的或根据误差确定。
使用这种方法编程序不用解方程组,只用递推公式,并且当逼近次数增加一次时,只要把程序中循环数加1,其余不用改变。
这是目前用多项式做曲线拟合的最好计算方法,有通用的语言程序供用户使用。
2.3.3非线性最小二乘拟合
在最小二乘法曲线拟合时,通常会遇到很多的非线性函数,这些非线性函数大多数可以通过数学变换进行线性化。
例如用指数函数来拟合,首先两边取自然对数,得,可以令得到。
先做出的一次线性拟合,然后再计算出原始模型的参数。
下面给出常见函数的线性化方法和函数图形:
幂函数:
令,则
指数函数:
可令,则
对数函数:
令,则
负指数函数:
S型曲线:
2.4多元最小二乘拟合
最小二乘法的有关概念可以推广到多元函数中,例如已知多元函数
(2-26)
的一组测量数据,以及它的一组权系数,要求函数
(2-27)
(2-28)
最小,这与前面一元最小二乘法中的求极值的问题完全是一样的,系数同样满足一元最小二乘法问题中的法方程组,只不过这里的
(2-29)
求解法方程组
(2-30)
就可以得到从而得到。
我们称为函数的最小二乘拟合。
基本与两个变量的最小二乘法曲线拟合问题的求解步骤相同。
但是,多元拟合的难点在于非线性模型线性化。
将上述最小二乘法拟合曲线的方法加以改进,推广至三维空间即为散乱数据点的曲面拟合,由于多项式拟合在次数较高时会出现龙格现象,为了避免这一现象的发生,可以采用双三次多项式来拟合三维散乱数据。
给定一组数据点设双三次曲面方程为
(2-31)
即
(2-32)
对该双三次曲面方程,考虑
(2-33)
同上面曲线拟合的解法完全类似,可以很快求得
(2-34)
的系数,即可得到散乱数据的曲面拟合函数。
龙格现象:
在计算方法中,有利用多项式对某一函数的近似逼近,这样,利用多项式就可以计算相应的函数值。
例如,在事先不知道某一函数的具体形式的情况下,只能测量得知某一些分散的函数值。
例如我们不知道气温随日期变化的具体函数关系,但是我们可以测量一些孤立的日期的气温值,并假定此气温随日期变化的函数满足某一多项式。
这样,利用已经测的数据,应用待定系数法便可以求得一个多项式函数。
应用此函数就可以计算或者说预测其他日期的气温值。
一般情况下,多项式的次数越多,需要的数据就越多,而预测也就越准确。
例外发生了,龙格在研究多项式插值的时候,发现有的情况下,并非取节点(日期数)越多多项式就越精确。
著名的例子是。
它的插值函数在两个端点处发生剧烈的波动,造成较大的误差。
究其原因,是舍入误差造成的。
三、总结部分
本文对数据拟合进行了全面的理论分析,通过对数据拟合理论体系的研究,全面整合了数据拟合的基本理论,充分了解并掌握
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数据 拟合 文献 综述