第3讲隐马尔可夫模型及其应用5_精品文档PPT资料.ppt
- 文档编号:15484435
- 上传时间:2022-11-01
- 格式:PPT
- 页数:59
- 大小:4.53MB
第3讲隐马尔可夫模型及其应用5_精品文档PPT资料.ppt
《第3讲隐马尔可夫模型及其应用5_精品文档PPT资料.ppt》由会员分享,可在线阅读,更多相关《第3讲隐马尔可夫模型及其应用5_精品文档PPT资料.ppt(59页珍藏版)》请在冰豆网上搜索。
表表示示成成状状态态图图的的Markov链链=转转移移弧弧上上有有概概率率的的非非确确定的有限状态自动机定的有限状态自动机二、隐Markov模型
(1)放有彩色球的罐子,每个罐子都有编号,随机地从罐子中摸出彩球放有彩色球的罐子,每个罐子都有编号,随机地从罐子中摸出彩球可观察序列可观察序列猜测隐藏猜测隐藏在幕后的在幕后的罐子序列罐子序列罐子模型罐子模型隐Markov模型
(2)v双重的随机过程双重的随机过程状态转移:
从一个罐子转移到另一个罐子1可观察符号的输出:
从某个罐子取出某种颜色的球2状状态态的的转转移移过过程程是是隐隐蔽蔽的的,而而可可观观察察符符号号的的输输出出过过程程是是状状态态转转移移过程的随机函数。
过程的随机函数。
罐子模型罐子模型q1.o1.观察序列观察序列O状态序列状态序列QHMM隐Markov模型(3)q2q3q4qTo2o3o4oT罐子模型罐子模型隐Markov模型(4)v隐隐Markov模型的形式化描述模型的形式化描述1.1.状态集合状态集合:
,以qt表示模型在t时刻的状态;
2.2.输出符号集合输出符号集合:
3.3.状态转移矩阵状态转移矩阵:
A=aij(aij是从状态Si转移到状态Sj的概率),其中:
以不同以不同编号表编号表示的不示的不同罐子同罐子不同颜不同颜色的球色的球罐罐子子之之间间互互相相转转移移的的概率概率形式化描述形式化描述隐Markov模型(5)4.可观察符号的概率分布矩阵可观察符号的概率分布矩阵:
B=bj(k),表示在状态j时输出符号vk的概率,其中:
5.初始状态概率分布初始状态概率分布:
从从某某个个罐罐子子取取出出某某种种颜颜色色球球的概率的概率在在初初始始时时刻刻选选择择不不同同罐罐子子的的概率概率一般的,一个一般的,一个HMM可以表示为可以表示为(S,O,A,B,)或或(A,B,)形式化描述形式化描述三、隐Markov模型的三个基本问题及其算法
(1)v隐Markov模型涉及如下三个基本问题评估问题评估问题:
给定一个观察序列和模型,如何计算给定模型下观察序列O的概率P(O|)。
1解码问题解码问题:
给定一个观察序列和模型,如何计算状态序列,使得该状态序列能“最好地解释”观察序列。
2学学习习问问题题:
给定一个观察序列,如何调节模型的参数,使得P(O|)最大。
3隐Markov模型的三个基本问题及其算法
(2)v问题问题1:
评估问题:
评估问题解决之道:
解决之道:
前向算法、后向算法、前向前向算法、后向算法、前向-后向算法后向算法v前向算法前向算法前向变量:
HMM在时间t输出序列O1Ot,并且位于状态i的概率:
则有:
公式公式3.1公式公式3.2评估问题评估问题前向算法:
前向算法:
1.初始化初始化:
2.递递归归:
3.终终止止:
隐Markov模型的三个基本问题及其算法(3)评估问题评估问题t=1t=2t=3t=4t=5t=Tt=6t=7t=T-1前向算法过程演示i=Ni=N-1i=5i=4i=3i=2i=11.初始化初始化1(i)=ibi(O1)评估问题评估问题t=1t=2t=3t=4t=5t=Tt=6t=7t=T-1前向算法过程演示i=Ni=N-1i=5i=4i=3i=2i=1评估问题评估问题t=1t=2t=3t=4t=5t=Tt=6t=7t=T-1前向算法过程演示i=Ni=N-1i=5i=4i=3i=2i=1评估问题评估问题t=1t=2t=3t=4t=5t=Tt=6t=7t=T-1前向算法过程演示i=Ni=N-1i=5i=4i=3i=2i=1评估问题评估问题t=1t=2t=3t=4t=5t=Tt=6t=7t=T-1前向算法过程演示i=Ni=N-1i=5i=4i=3i=2i=12.递归评估问题评估问题t=1t=2t=3t=4t=5t=Tt=6t=7t=T-1前向算法过程演示i=Ni=N-1i=5i=4i=3i=2i=1评估问题评估问题t=1t=2t=3t=4t=5t=Tt=6t=7t=T-1前向算法过程演示i=Ni=N-1i=5i=4i=3i=2i=1评估问题评估问题t=1t=2t=3t=4t=5t=Tt=6t=7t=T-1前向算法过程演示i=Ni=N-1i=5i=4i=3i=2i=1评估问题评估问题t=1t=2t=3t=4t=5t=Tt=6t=7t=T-1前向算法过程演示i=Ni=N-1i=5i=4i=3i=2i=1评估问题评估问题前向算法过程演示i=Nt=1t=2t=3t=4t=5t=Tt=6t=7t=T-1i=N-1i=5i=4i=3i=2i=1评估问题评估问题前向算法过程演示t=1t=2t=3t=4t=5t=Tt=6t=7t=T-1i=Ni=N-1i=5i=4i=3i=2i=1评估问题评估问题t=1t=2t=3t=4t=5t=Tt=6t=7t=T-1前向算法过程演示i=Ni=N-1i=5i=4i=3i=2i=1评估问题评估问题t=1t=2t=3t=4t=5t=Tt=6t=7t=T-1前向算法过程演示i=Ni=N-1i=5i=4i=3i=2i=1评估问题评估问题t=1t=2t=3t=4t=5t=Tt=T-1t=6t=7前向算法过程演示i=Ni=N-1i=5i=4i=3i=2i=1评估问题评估问题前向算法过程演示t=1t=2t=3t=4t=5t=Tt=T-1t=6t=7i=Ni=N-1i=5i=4i=3i=2i=13.计算P(O|)评估问题评估问题t=1t=2t=3t=4t=5t=Tt=T-1t=6t=7前向算法过程演示i=Ni=N-1i=5i=4i=3i=2i=1评估问题评估问题评估问题评估问题n后向算法后向算法n与向前算法类似:
定义向后变量n初始化:
n递归:
n终结:
隐Markov模型的三个基本问题及其算法(4)隐Markov模型的三个基本问题及其算法(5)v问题问题2:
解码问题:
解码问题给定一个观察序列和模型,如何计算状态序列,使得该状态序列能“最好地解释”观察序列。
所求的所求的Q应当在某个准则下是应当在某个准则下是“最优最优”的的,因此也称因此也称Q为最优路径为最优路径,解码问题即是确定最优路径的问题。
解码问题即是确定最优路径的问题。
该问题可形式化为:
公式公式3.3解码问题解码问题隐Markov模型的三个基本问题及其算法(6)假定有假定有N个个词性性标记,给定定词串中有串中有M个个词考考虑最坏的情况:
每个最坏的情况:
每个词都有都有N个可能的个可能的词性性标记,则可能的可能的状状态序列有序列有NM个个随着随着M(词串串长度)的增加,需要度)的增加,需要计算的可能路径数算的可能路径数目以指数方式增目以指数方式增长,需要需要寻找更有效的算法找更有效的算法效率效率问题解码问题解码问题词性是状性是状态,词语是是观察符号察符号隐Markov模型的三个基本问题及其算法(7)vViterbi算法:
算法:
基于基于Viterbi变量的动态规划算法变量的动态规划算法Viterbi变量:
变量:
在时间在时间t沿状态序列沿状态序列q1q2.qt且且qt=Si而产生出而产生出O1O2Ot的最大概率,即:
的最大概率,即:
公式公式3.4Viterbi变变量量说说明明的的是是,从从初初始始状状态态到到t时时刻刻的的状状态态Si的的所所有有路路径径中中,必必有有一一条条路路径径,能能够够使使得得你你观观察察到到O1O2Ot序序列列的的概概率率最大,也即这条路径最好的解释了最大,也即这条路径最好的解释了O1O2Ot序列的出现。
序列的出现。
解码问题解码问题隐Markov模型的三个基本问题及其算法(8)vViterbi算法(续)算法(续)初始化:
初始化:
路径回溯:
终终结:
结:
递递归:
归:
解码问题解码问题隐Markov模型的三个基本问题及其算法(9)o1o2o3ot-1otoT.观察序列观察序列s1s2s3sNsjsi.sj.1.初始化初始化2.递推递推3.终结终结.4.回溯回溯.解码问题解码问题假定有假定有N个个词性性标记,给定定词串中有串中有M个个词。
考考虑最坏的情况,最坏的情况,扫描到每一个描到每一个词时,从前一个,从前一个词的各个的各个词性性标记(N个)到当前个)到当前词的各个的各个词性性标记(N个),有个),有NN=N2条路条路经,即,即N2次运算,次运算,扫描完整个描完整个词串(串(长度度为M),),计算算次数次数为M个个N2相加,即相加,即。
对于确定的于确定的词性性标注系注系统而言,而言,N是确定的,因此,随着是确定的,因此,随着M长度的增加,度的增加,计算算时间以以线性方式增性方式增长。
也就是。
也就是说,Viterbi算算法的法的计算复算复杂度是度是线性的。
性的。
Viterbi算法的复算法的复杂度分析度分析隐Markov模型的三个基本问题及其算法(10)解码问题解码问题隐Markov模型的三个基本问题及其算法(11)v问题三:
学习问题问题三:
学习问题给定一个观察序列给定一个观察序列O1O2OT,如何调节模型,如何调节模型的参的参数,使得数,使得P(O|)最大。
最大。
也称训练问题、参数估计问题也称训练问题、参数估计问题学习问题学习问题如果产生观察序列O的状态Q=q1q2qT已知,可以用最大似然估计来计算HMM的参数:
其中,(x,y)为克罗奈克克罗奈克(Kronecker)函数函数,当x=y时,(x,y)=1,否则(x,y)=0。
隐Markov模型的三个基本问题及其算法(12)公式公式3.5公式公式3.6学习问题学习问题其中,vk是模型输出符号集中的第k个符号。
类似地,隐Markov模型的三个基本问题及其算法(13)公式公式3.7学习问题学习问题期望值最大化算法(Expectation-Maximization,EM)基本思想:
隐Markov模型的三个基本问题及其算法(14)
(1)初始化时随机地给模型的参数赋值(遵循限制规则,如:
从某一状态出发的转移概率总和为1),得到模型0;
(2)从00得到从某一状态转移到另一状态的期望次数,然后以期望次数代替公式中的次数,得到模型参数的新估计,由此得到新的模型1;
(3)从1又可得到模型中隐变量的期望值,由此重新估计模型参数。
循环这一过程,参数收敛于最大似然估计值。
学习问题学习问题给定HMM模型和观察序列OO1O2OT,那么,在时间t位于状态Si,时间t+1位于状态Sj的概率:
隐Markov模型的三个基本问题及其算法
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 讲隐马尔可夫 模型 及其 应用 精品 文档