测量基础知识概要Word格式.docx
- 文档编号:15341035
- 上传时间:2022-10-29
- 格式:DOCX
- 页数:10
- 大小:90.22KB
测量基础知识概要Word格式.docx
《测量基础知识概要Word格式.docx》由会员分享,可在线阅读,更多相关《测量基础知识概要Word格式.docx(10页珍藏版)》请在冰豆网上搜索。
也可理解为试验和测量的全过程。
检验:
是判断被测物理量是否合格(在规定范围内)的过程,一般来说就是确定产品是否满足设计要求的过程,即判断产品合格性的过程,通常不一定要求测出具体值。
因此检验也可理解为不要求知道具体值的测量。
计量:
为实现测量单位的统一和量值准确可靠的测量。
1.2测量基准
测量基准是复现和保存计量单位并具有规定计量单位特性的计量器具。
在几何量计量领域内,测量基准可分为长度基准和角度基准两类。
长度基准:
1983年第十七届国际计量大会根据国际计量委员会的报告,批准了米的新定义:
即“一米是光在真空中在1/299792458秒时间间隔内的行程长度”。
根据米的定义建立的国家基准、副基准和工作基准,一般都不能在生产中直接用于对零件进行测量。
为了确保量值的合理和统一,必须按《国家计量检定系统》的规定,将具有最高计量特性的国家基准逐级进行传递,直至用于对产品进行测量的各种测量器具。
图1-1为长度(端度)计量检定系统表(简化)。
图1-1长度计量检定系统表(简化)
角度基准:
角度量与长度量不同。
由于常用角度单位(度)是由圆周角定义的,即圆周角等于360°
而弧度与度、分、秒又有确定的换算关系,因此无需建立角度的自然基准。
1.3量块
量块是一种平行平面端度量具,又称块规。
它是保证长度量值统一的重要常用实物量具。
除了作为工作基准之外,量块还可以用来调整仪器、机床或直接测量零件。
一般特性:
量块是以其两端面之间的距离作为长度的实物基准(标准),是一种单值量具,其材料与热处理工艺应满足量块的尺寸稳定、硬度高、耐磨性好的要求。
通常都用铬锰钢、铬钢和轴承钢制成。
其线胀系数与普通钢材相同,即为(11.5±
1)×
10-6/℃,尺稳定性约为年变化量不超出±
0.5~1μm/m。
结构:
绝大多数量块制成直角平行六面体,如图1-2所示;
也有制成φ20的圆柱体。
每块量块都有两个表面非常光洁、平面度精度很高的平行平面,称为量块的测量面(或称工作面)。
量块长度(尺寸)是指量块的一个测量面上的一点至与量块相研合的辅助体(材质与量块相同)表面(亦称辅助表面)之间的距离。
为了消除量块测量面的平面度误差和两测量面间的平行度误差对量块长度的影响,将量块的工作尺寸定义为量块的中心长度,即两个测量面的中心点的长度。
精度:
量块按其制造精度分为五个“级”:
00、0、1、2和3级。
00级精度最高,3级最低。
分级的依据是量块长度的极限偏差和长度变动量允许值。
量块生产企业大都按“级”向市场销售量块,此时用户只能按量块的标称尺寸使用量块,这样必然受到量块中心长度实际偏差的影响,将反制造误差带入测量结果。
在量值传递工作中,为了消除量块制造误差对测量的影响,常常按量块检定后得到的实际尺寸使用。
各种不同精度的检定方法可以得到具有不同测量不确定度的量块,并依此划分量块的等别,如图1-1所示。
检定后的量块可得到每量块的中心长度的实际偏差,显然同一套量块若按“等”使用可以得到更高的测量精度(较小的测量不确定度)。
但由于按“等”使用比较麻烦,且检定成本高,固在生产现场仍按“级”使用。
使用:
单个量块使用很不方便,故一般都按序列将许多不同标称尺寸的量块成套配置,使用时根据需要选择多个适当的量块研合起来使用。
通常,组成所需尺寸的量块总数不应超过四块。
例如,为组成89.765mm的尺寸,可由成套的量块中选出1.005、1.26、7.5、80mm四块组成,即
注意事项:
量块在使用过程中应注意以下几点:
①量块必须在使用有效期内,否应及时送专业部门检定。
②所选量块应先放入航空汽油中清洗,并用洁净绸布将其擦干,待量块温度与环境湿度相同后方可使用。
③使用环境良好,防止各种腐蚀性物质对量块的损伤及因工作面上的灰尘而划伤工作面,影响其研合性,。
④轻拿、轻放量块,杜绝磕碰、跌落等情况的发生。
⑤不得用手直接接触量块,以免造成汗液对量块的腐蚀及手温对测量精确度的影响。
⑥使用完毕应,先用航空汽油清洗量块,并擦干后涂上防锈脂放入专用盒内妥善保管。
1.4测量方法分类
根据获得测量结果的不同方式可分为:
直接测量和间接测量:
从测量器具的读数装置上直接得到被测量的数值或对标准值的偏差称直接测量。
如用游标卡尺、外径千分尺测量轴径等。
通过测量与被测量有一定函数关系的量,根据已知的函数关系式求得被测量的测量称为间接测量。
如通过测量一圆弧相应的弓高和弦长而得到其圆弧半径的实际值。
绝对测量和相对测量:
测量器具的示值直接反映被测量量值的测量为绝对测量。
用游标卡尺、外径千分尺测量轴径不仅是绝对测量,也是绝对测量。
将被测量与一个标准量值进行比较得到两者差值的测量为相对测量。
如用内径百分表测量孔径为相对测量。
接触测量和非接触测量:
测量器具的测头与被测件表面接触并有机械作用的测力存在的测量为接触测量。
如用光切法显微镜测量表面粗糙度即属于非接触测量。
单项测量和综合测量:
对个别的、彼此没有联系的某一单项参数的测量称为单项测量。
同时测量个零件的多个参数及其综合影响的测量。
用测量器具分别测出螺纹的中径、半角及螺距属单项测量;
而用螺纹量规的通端检测螺纹则属综合测量。
被动测量和主动测量:
产品加工完成后的测量为被动测量;
正在加工过程中的测量为主动测量。
被动测量只能发现和挑出不合格品。
而主动测量可通过其测得值的反馈,控制设备的加工过程,预防和杜绝不合格品的产生。
1.5测量误差
由于测量过程的不完善而产生的测量误差,将导致测得值的分散入不确定。
因此,在测量过程中,正确分析测量误差的性质及其产生的原因,对测得值进行必要的数据处理,获得满足一定要求的置信水平的测量结果,是十分重要的。
测量误差定义:
被测量的测得值x与其真值x0之差,即:
△=x-x0
由于真值是不可能确切获得的,因而上述善于测量误差的定义也是理想要概念。
在实际工作中往往将比被测量值的可信度(精度)更高的值,作为其当前测量值的“真值”。
误差来源:
测量误差主要由测量器具、测量方法、测量环境和测量人员等方面因素产生。
①测量器具:
测量器具设计中存在的原理误差,如杠杆机构、阿贝误差等。
制造和装配过程中的误差也会引起其示值误差的产生。
例如刻线尺的制造误差、量块制造与检定误差、表盘的刻制与装配偏心、光学系统的放大倍数误差、齿轮分度误差等。
其中最重要的是基准件的误差,如刻线尺和量块的误差,它是测量器具误差的主要来源。
②测量方法:
间接测量法中因采用近似的函数关系原理而产生的误差或多个数据经过计算后的误差累积。
③测量环境:
测量环境主要包括温度、气压、湿度、振动、空气质量等因素。
在一般测量过程中,温度是最重要的因素。
测量温度对标准温度(+20℃)的偏离、测量过程中温度的变化以及测量器具与被测件的温差等都将产生测量误差。
④测量人员:
测量人员引起的误差主要有视差、估读误差、调整误差等引起,它的大小取决于测量人员的操作技术和其它主观因素。
误差分类:
测量误差按其产生的原因、出现的规律、及其对测量结果的影响,可以分为系统误差、随机误差和粗大误差。
①系统误差:
在规定条件下,绝对值和符号保持不变或按某一确定规律变化的误差,称为系统误差。
其中绝对值和符号不变的系统误差为定值系统误差,按一定规律变化的系统误差为变值系统误差。
如量块的误差、刻线尺的误差、度盘偏心的误差。
系统误差大部分能通过修正值或找出其变化规律后加以消除。
②随机误差:
在规定条件下,绝对值和符号以不可预知的方式变化的误差,称为随机误差。
就某一次测量而言,随机误差的出现无规律可循,因而无法消除。
但若进行多次等精度重复测量,则与其它随机事件一样具有统计规律的基本特性,可以通过分析,估算出随机误差值的范围。
随机误差主要由温度波动、测量力变化、测量器具传动机构不稳、视差等各种随机因素造成,虽然无法消除,但只要认真、仔细地分析产生的原因,还是能减少其对测量结果的影响。
③粗大误差:
明显超出规定条件下预期的误差,称为粗大误差。
粗大误差是由某种非正常的原因造成的。
如读数错误、温度的突然大幅度变动、记录错误等。
该误差可根据误差理论,按一定规则予以剔除。
1.6测量数据的处理
在修正了已定系统误差和剔除了粗大误差以后,测得值中仍含有随机误差和部分系统误差,还需估算其测量误差的大小,评定测得值的不确定度,知道测得值及该测得值的变化范围(可信程度),才能获得完整的测量结果。
测量不确定度的评定:
用标准偏差表示测量结果的不确定度,称为标准不确定度,按照评定方法不同,它可分为两类:
用对一系列重复观测值进行统计分析以计算标准不确定度的方法,称为A类评定;
用不同于统计分析的其他方法来评定标准不确定度,称为B类评定。
A类评定:
由统计理论可知,随机变量期望值的最佳估计值是n次测得值xi的算术平均值x。
该组测得值的标准差的估算值S为
B类评定:
在多数实际测量工作中,不能或不需进行多次重复测量,则其不确定度只能用非统计分析的方法进行B类评定。
B类评定需要依据有关的资料作出科学的判断。
这些资料的来源有:
以前的测量数据,测量器具的产品说明书,检定证书,技术手册等。
如由产品说明书查得某测量器具的不确定度为6μm,若期望得到按正态分布规律中3倍标准差的置信水准(99.73﹪),则按B类评定时标准不确定度应取u=6/3=2μm。
合成标准不确定度的估算:
测量过程中一般都会有多个独立的误差源共同对测量的不确定度产生影响,因测量方法的不同,各误差源的影响程度也不相同。
各误差源标准不确定度的合成按测量方法的不同可分为以下两类:
①直接测量的合成标准不确定度:
取各类独立误差源的标准不确定度的平方和的正平方根,即
②间接测量的合成标准不确定度:
间接测量时,测量结果需经各间接测量值按事先设计好的函数关系计算后求得。
由于各间接测量值的标准不确定度对测量结果的影响程度不同,在估算测量结果的不确定度时,要先分别对函数中各测量值求偏导数,算出其不确定度的传播系数。
各测量值的标准不确定度乘以相应的传播系数后,取平方和的正平方根得到测量结果的不确定度。
1.7基本测量原则
在实际测量中,对于同一被测量往往可以采用多种测量方法。
为减小测量不确定度,应尽可能遵守以下基本测量原则:
阿贝原则:
要求在测量过程中被测长度与基准长度应安置在同一直线上的原则。
若被测长度与基准长度并排放置,在测量比较过程中由于制造误差的存在,移动方向的偏移,两长度之间出现夹角而产生较大的误差。
误差的大小除与两长度之间夹角大小有关外,还与其之间距离大小有关,距离越大,误差也越大。
基准统一原则:
测量基准要与加工基准和使用基准统一。
即工序测量应以工艺基准作为测量基准,终检测量应以设计基准作为测量基准。
最短链原则:
在间接测量中,与被测量具有函
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 测量 基础知识 概要