新人教版八年级数学下册全套教案Word文件下载.docx
- 文档编号:15339210
- 上传时间:2022-10-29
- 格式:DOCX
- 页数:41
- 大小:247.59KB
新人教版八年级数学下册全套教案Word文件下载.docx
《新人教版八年级数学下册全套教案Word文件下载.docx》由会员分享,可在线阅读,更多相关《新人教版八年级数学下册全套教案Word文件下载.docx(41页珍藏版)》请在冰豆网上搜索。
(3)菱形的性质,可以让学生动手利用折纸、剪切的方法,探究、归纳.
方法一:
将一张长方形的纸横对折,再竖对折(如教材P107的探究),然后沿图中的虚线剪下,打开即是菱形纸片;
方法二:
如图1,两张等宽的纸条交叉重叠在一起,重叠的部分ABCD就是菱形;
图1图2
方法三:
将一张长方形纸对折,再在折痕上取任意长为底边,剪一个等腰三角形,然后打开即是菱形(如图2).
(3)要让学生知道性质1的已知:
如图,菱形ABCD,和结论:
AB=BC=CD=DA.
性质2的已知:
如图,在菱形ABCD中,对角线AC、BD相交于点O,和结论:
AC⊥BD,AC平分∠BAD和∠BCD;
BD平分∠ABC和∠ADC.并能灵活运用.
(4)指出:
菱形是轴对称图形,它有两条对称轴,这两条对称轴是菱形的对角线,所以两条对称轴互相垂直.
(5)让学生知道:
菱形ABCD被对角线AC、BD分成了四个全等的直角三角形,在计算或证明时常用这个结论.
(6)菱形的面积公式是(其中a、b是菱形的两条对角线分别的长).即:
“菱形的面积等于它的两条对角线长的积的一半”.还要指出:
当不易求出对角线长时,就用平行四边形面积的一般计算方法计算菱形面积S=底×
高.
三、例题的意图分析
本节课安排了两个例题,例1是一道补充题,是为了巩固菱形的性质;
例2是教材P108中的例2,这是一道用菱形知识与直角三角形知识来求菱形面积的实际应用问题.此题目,除用以巩固菱形性质外,还可以引导学生用不同的方法来计算菱形的面积,以促进学生熟练、灵活地运用知识.
四、课堂引入
1.(复习)什么叫做平行四边形?
什么叫矩形?
平行四边形和矩形之间的关系是什么?
2.(引入)我们已经学习了一种特殊的平行四边形——矩形,其实还有另外的特殊平行四边形,请看演示:
(可将事先按如图做成的一组对边可以活动的教具进行演示)如图,改变平行四边形的边,使之一组邻边相等,从而引出菱形概念.
菱形定义:
有一组邻边相等的平行四边形叫做菱形.
【强调】 菱形
(1)是平行四边形;
(2)一组邻边相等.
让学生举一些日常生活中所见到过的菱形的例子.
五、例习题分析
例1
(补充)已知:
如图,四边形ABCD是菱形,F是AB上一点,DF交AC于E.
求证:
∠AFD=∠CBE.
证明:
∵ 四边形ABCD是菱形,
∴ CB=CD,CA平分∠BCD.
∴ ∠BCE=∠DCE.又CE=CE,
∴△BCE≌△COB(SAS).
∴ ∠CBE=∠CDE.
∵ 在菱形ABCD中,AB∥CD,∴∠AFD=∠FDC
∴ ∠AFD=∠CBE.
例2(教材P108例2)略
六、随堂练习
1.若菱形的边长等于一条对角线的长,则它的一组邻角的度数分别为.
2.已知菱形的两条对角线分别是6cm和8cm,求菱形的周长和面积.
3.已知菱形ABCD的周长为20cm,且相邻两内角之比是1∶2,求菱形的对角线的长和面积.
4.已知:
如图,菱形ABCD中,E、F分别是CB、CD上的点,且BE=DF.求证:
∠AEF=∠AFE.
七、课后练习
1.菱形ABCD中,∠D∶∠A=3∶1,菱形的周长为8cm,求菱形的高.
2.如图,四边形ABCD是边长为13cm的菱形,其中对角线BD长10cm,求
(1)对角线AC的长度;
(2)菱形ABCD的面积.
19.2.2菱形
(二)
1.理解并掌握菱形的定义及两个判定方法;
会用这些判定方法进行有关的论证和计算;
2.在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力.
菱形的两个判定方法.
2.教学难点:
判定方法的证明方法及运用.
引入时,可以通过教材P109的探究、教材P109下面菱形的作图,及利用折纸、剪切的方法,让学生动起来,师生共同探究并归纳出菱形的几种判定方法.
在判定一个图形是菱形时,用它的“定义”判定是最基本、最重要的方法,另外两个判定方法都是以定义为基础推导出来的.
应用判定方法1时,要注意其性质包括两个条件:
(1)是一个平行四边形;
(2)两条对角线互相垂直.为了加深印象,也可以举一些反例提问学生,如对角线互相垂直的四边形是菱形吗?
为什么?
同时可用图来证实,虽然对角线AC⊥BD,但它们都不是菱形.
菱形常用的判定方法归纳为(让学生讨论归纳后,由教师小结并板书):
注意:
(2)与(4)的题设也是从四边形出发,和矩形一样它们的题设条件都包含有平行四边形的判定条件.如方法(4)、根据对角线互相平分,就可以首先判定四边形是平行四边形,这样,判定方法(4)就和判定方法(3)等同了.
本节课安排了两个例题,其中例1是教材P109的例3,例2是一道补充的题目,这两个题目都是菱形判定方法的直接的运用,主要目的是能让学生掌握菱形的判定方法,并会用这些判定方法进行有关的论证和计算.这些题目的推理都比较简单,学生掌握起来不会有什么困难,可以让学生自己去完成.程度好一些的班级,可以选讲例3.
1.复习
(1)菱形的定义:
一组邻边相等的平行四边形;
(2)菱形的性质1菱形的四条边都相等;
性质2菱形的对角线互相平分,并且每条对角线平分一组对角;
(3)运用菱形的定义进行菱形的判定,应具备几个条件?
(判定:
2个条件)
2.【问题】要判定一个四边形是菱形,除根据定义判定外,还有其它的判定方法吗?
3.【探究】
(教材P109的探究)用一长一短两根木条,在它们的中点处固定一个小钉,做成一个可转动的十字,四周围上一根橡皮筋,做成一个四边形.转动木条,这个四边形什么时候变成菱形?
通过演示,容易得到:
菱形判定方法1 对角线互相垂直的平行四边形是菱形.
注意此方法包括两个条件:
(2)两条对角线互相垂直.
通过教材P109下面菱形的作图,可以得到从一般四边形直接判定菱形的方法:
菱形判定方法2 四边都相等的四边形是菱形.
例1(教材P109的例3)略
例2(补充)已知:
如图ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F.
求证:
四边形AFCE是菱形.
∵ 四边形ABCD是平行四边形,
∴ AE∥FC.
∴ ∠1=∠2.
又 ∠AOE=∠COF,AO=CO,
∴ △AOE≌△COF.
∴ EO=FO.
∴ 四边形AFCE是平行四边形.
又 EF⊥AC,
∴ AFCE是菱形(对角线互相垂直的平行四边形是菱形).
※例3(选讲)已知:
如图,△ABC中,∠ACB=90°
,BE平分∠ABC,CD⊥AB与D,EH⊥AB于H,CD交BE于F.
四边形CEHF为菱形.
略证:
易证CF∥EH,CE=EH,在Rt△BCE中,∠CBE+∠CEB=90°
,在Rt△BDF中,∠DBF+∠DFB=90°
,因为∠CBE=∠DBF,∠CFE=∠DFB,所以∠CEB=∠CFE,所以CE=CF.
所以,CF=CE=EH,CF∥EH,所以四边形CEHF为菱形.
1.填空:
(1)对角线互相平分的四边形是;
(2)对角线互相垂直平分的四边形是________;
(3)对角线相等且互相平分的四边形是________;
(4)两组对边分别平行,且对角线的四边形是菱形.
2.画一个菱形,使它的两条对角线长分别为6cm、8cm.
3.如图,O是矩形ABCD的对角线的交点,DE∥AC,CE∥BD,DE和CE相交于E,求证:
四边形OCED是菱形。
1.下列条件中,能判定四边形是菱形的是().
(A)两条对角线相等(B)两条对角线互相垂直
(C)两条对角线相等且互相垂直(D)两条对角线互相垂直平分
2.已知:
如图,M是等腰三角形ABC底边BC上的中点,DM⊥AB,EF⊥AB,ME⊥AC,DG⊥AC.求证:
四边形MEND是菱形.
3.做一做:
设计一个由菱形组成的花边图案.花边的长为15cm,宽为4cm,由有一条对角线在同一条直线上的四个菱形组成,前一个菱形对角线的交点,是后一个菱形的一个顶点.画出花边图形.
19.2.3正方形
一、教学目的
1.掌握正方形的概念、性质和判定,并会用它们进行有关的论证和计算.
2.理解正方形与平行四边形、矩形、菱形的联系和区别,通过正方形与平行四边形、矩形、菱形的联系的教学对学生进行辩证唯物主义教育,提高学生的逻辑思维能力.
正方形的定义及正方形与平行四边形、矩形、菱形的联系.
正方形与矩形、菱形的关系及正方形性质与判定的灵活运用.
本节的主要内容是正方形概念、性质和判定方法.重点是正方形定义.
正方形学生在小学阶段已有初步了解,生活中应用很广,其时正方形不仅是特殊的平行四边形,而且是特殊的矩形,和特殊的菱形,学好正方形有助于巩固矩形、菱形各自特有的性质和判定.
学生在小学学过了正方形,他们知道正方形的四个角都是直角,四条边相等,正方形的面积等于它的边长的平方,本节课的教学是加深学生的理论认识,拓宽学生的知识面,如何使学生理解为什么正方形的四个角都是直角,四条边相等,拓宽了正方形对角线性质的知识.在教学中可以让学生动手从一张矩形纸中折出一个正方形,培养学生实践能力.另外,通过对正方形定义和性质的讲解,培养学生类比思想、归纳思想、转化思想和隔离方法.
(1)掌握正方形定义是学好本节的关键.正方形是在平行四边形的前提下定义的,它包含两层意思:
①有一组邻边相等的平行四边形(菱形)
②有一个角是直角的平行四边形(矩形)
正方形不仅是特殊的平行四边形,并且是特殊的矩形,又是特殊的菱形.教学时要结合教科书中P110中的图19.2-14,具体说明正方形与矩形、菱形的关系.这些关系是教学的一个难点,也是教学内容的重点和关键,要结合图形或者教具,或用简单的集合关系图,使学生把正方形与平行四边形、矩形、菱形的关系搞清楚.这些概念重叠交错,不易搞清楚,在教学这些内容时进度可稍放慢些.
(2)因为正方形是平行四边形、矩形,又是菱形,所以它的性质是它们性质的综合,不仅有平行四边形的所有性质,也有矩形和菱形的特殊性质,所以讲正方形性质的关键是在复习矩形、菱形的基础上进行总结.可以将正方形的性质总结如下:
边:
对边平行,四边相等;
角:
四个角都是直角;
对角线:
对角线相等,互相垂直平分,每条对角线平分一组对角.
还要让学生注意到:
正方形的一条对角线把正方形分成两个全等的等腰直角三角形,对角线与边的夹角是45°
;
正方形的两条对角线把它分成四个全等的等腰直角三角形,这是正方形的特殊性质.要使学生熟悉这些最基本的内容.
(3)对于怎样判定一个四边形是正方形,因为层次比较多,不必分析的太具体,只要强调能判定一个四边
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新人 八年 级数 下册 全套 教案