人教版九年级数学上册教案全集Word文档下载推荐.docx
- 文档编号:15332657
- 上传时间:2022-10-29
- 格式:DOCX
- 页数:14
- 大小:27.31KB
人教版九年级数学上册教案全集Word文档下载推荐.docx
《人教版九年级数学上册教案全集Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《人教版九年级数学上册教案全集Word文档下载推荐.docx(14页珍藏版)》请在冰豆网上搜索。
利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题的能力.
教学重点
1.二次根式(a≥0)的内涵.(a≥0)是一个非负数;
()2=a(a≥0);
=a(a≥0)及其运用.
2.二次根式乘除法的规定及其运用.
3.最简二次根式的概念.
4.二次根式的加减运算.
教学难点
1.对(a≥0)是一个非负数的理解;
对等式()2=a(a≥0)及=a(a≥0)的理解及应用.
2.二次根式的乘法、除法的条件限制.
3.利用最简二次根式的概念把一个二次根式化成最简二次根式.
教学关键
1.潜移默化地培养学生从具体到一般的推理能力,突出重点,突破难点.
2.培养学生利用二次根式的规定和重要结论进行准确计算的能力,培养学生一丝不苟的科学精神.
单元课时划分
本单元教学时间约需11课时,具体分配如下:
21.1
二次根式
3课时
21.2
二次根式的乘法
21.3
二次根式的加减
教学活动、习题课、小结
2课时
21.1
二次根式
第一课时
教学内容
二次根式的概念及其运用
教学目标
理解二次根式的概念,并利用(a≥0)的意义解答具体题目.
提出问题,根据问题给出概念,应用概念解决实际问题.
教学重难点关键
1.重点:
形如(a≥0)的式子叫做二次根式的概念;
2.难点与关键:
利用“(a≥0)”解决具体问题.
教学过程
一、复习引入
(学生活动)请同学们独立完成下列三个问题:
问题1:
已知反比例函数y=,那么它的图象在第一象限横、纵坐标相等的点的坐标是___________.
问题2:
如图,在直角三角形ABC中,AC=3,BC=1,∠C=90°
,那么AB边的长是__________.
问题3:
甲射击6次,各次击中的环数如下:
8、7、9、9、7、8,那么甲这次射击的方差是S2,那么S=_________.
老师点评:
问题1:
横、纵坐标相等,即x=y,所以x2=3.因为点在第一象限,所以x=,所以所求点的坐标(,).
问题2:
由勾股定理得AB=
由方差的概念得S=
.
二、探索新知
很明显、、,都是一些正数的算术平方根.像这样一些正数的算术平方根的式子,我们就把它称二次根式.因此,一般地,我们把形如(a≥0)的式子叫做二次根式,“”称为二次根号.
(学生活动)议一议:
1.-1有算术平方根吗?
2.0的算术平方根是多少?
3.当a<
0,有意义吗?
老师点评:
(略)
例1.下列式子,哪些是二次根式,哪些不是二次根式:
、、、(x>
0)、、、-、、(x≥0,y≥0).
分析:
二次根式应满足两个条件:
第一,有二次根号“”;
第二,被开方数是正数或0.
解:
二次根式有:
、(x>
0)、、-、(x≥0,y≥0);
不是二次根式的有:
、、、.
例2.当x是多少时,在实数范围内有意义?
由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0,才能有意义.
由3x-1≥0,得:
x≥
当x≥时,在实数范围内有意义.
三、巩固练习
教材P练习1、2、3.
四、应用拓展
例3.当x是多少时,+在实数范围内有意义?
要使+在实数范围内有意义,必须同时满足中的≥0和中的x+1≠0.
依题意,得
由①得:
x≥-
由②得:
x≠-1
当x≥-且x≠-1时,+在实数范围内有意义.
例4
(1)已知y=++5,求的值.(答案:
2)
(2)若+=0,求a2004+b2004的值.(答案:
)
五、归纳小结(学生活动,老师点评)
本节课要掌握:
1.形如(a≥0)的式子叫做二次根式,“”称为二次根号.
2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.
六、布置作业
1.教材P8复习巩固1、综合应用5.
2.选用课时作业设计.
3.课后作业:
《同步训练》
第一课时作业设计
一、选择题
1.下列式子中,是二次根式的是(
A.-
B.
C.
D.x
2.下列式子中,不是二次根式的是(
A.
D.
3.已知一个正方形的面积是5,那么它的边长是(
A.5
D.以上皆不对
二、填空题
1.形如________的式子叫做二次根式.
2.面积为a的正方形的边长为________.
3.负数________平方根.
三、综合提高题
1.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,底面应做成正方形,试问底面边长应是多少?
2.当x是多少时,+x2在实数范围内有意义?
3.若+有意义,则=_______.
4.使式子有意义的未知数x有(
)个.
A.0
B.1
C.2
D.无数
5.已知a、b为实数,且+2=b+4,求a、b的值.
第一课时作业设计答案:
一、1.A
2.D
3.B
二、1.(a≥0)
2.
3.没有
三、1.设底面边长为x,则0.2x2=1,解答:
x=.
2.依题意得:
,
∴当x>
-且x≠0时,+x2在实数范围内没有意义.
3.
4.B
5.a=5,b=-4
21.1
二次根式
(2)
第二课时
1.(a≥0)是一个非负数;
2.()2=a(a≥0).
理解(a≥0)是一个非负数和()2=a(a≥0),并利用它们进行计算和化简.
通过复习二次根式的概念,用逻辑推理的方法推出(a≥0)是一个非负数,用具体数据结合算术平方根的意义导出()2=a(a≥0);
最后运用结论严谨解题.
(a≥0)是一个非负数;
()2=a(a≥0)及其运用.
2.难点、关键:
用分类思想的方法导出(a≥0)是一个非负数;
用探究的方法导出()2=a(a≥0).
(学生活动)口答
1.什么叫二次根式?
2.当a≥0时,叫什么?
当a<
0时,有意义吗?
老师点评(略).
二、探究新知
议一议:
(学生分组讨论,提问解答)
(a≥0)是一个什么数呢?
根据学生讨论和上面的练习,我们可以得出
(a≥0)是一个非负数.
做一做:
根据算术平方根的意义填空:
()2=_______;
()2=______;
()2=_______.
是4的算术平方根,根据算术平方根的意义,是一个平方等于4的非负数,因此有()2=4.
同理可得:
()2=2,()2=9,()2=3,()2=,()2=,()2=0,所以
()2=a(a≥0)
例1
计算
1.()2
2.(3)2
3.()2
4.()2
我们可以直接利用()2=a(a≥0)的结论解题.
解:
()2=,(3)2=32•()2=32•5=45,
()2=,()2=.
计算下列各式的值:
()2
()2
(4)2
例2
1.()2(x≥0)
2.()2
4.()2
分析:
(1)因为x≥0,所以x+1>
0;
(2)a2≥0;
(3)a2+2a+1=(a+1)≥0;
(4)4x2-12x+9=(2x)2-2•2x•3+32=(2x-3)2≥0.
所以上面的4题都可以运用()2=a(a≥0)的重要结论解题.
()2=x+1
(2)∵a2≥0,∴()2=a2
(3)∵a2+2a+1=(a+1)2
又∵(a+1)2≥0,∴a2+2a+1≥0,∴=a2+2a+1
(4)∵4x2-12x+9=(2x)2-2•2x•3+32=(2x-3)2
又∵(2x-3)2≥0
∴4x2-12x+9≥0,∴()2=4x2-12x+9
例3在实数范围内分解下列因式:
(1)x2-3
(2)x4-4
(3)2x2-3
五、归纳小结
本节课应掌握:
2.()2=a(a≥0);
反之:
a=()2(a≥0).
1.教材P8
复习巩固2.
(1)、
(2)
P9
7.
2.选用课时作业设计
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 九年级 数学 上册 教案 全集