全国计算机等级考试二级笔试复习资料Word格式文档下载.docx
- 文档编号:15289084
- 上传时间:2022-10-29
- 格式:DOCX
- 页数:28
- 大小:144.64KB
全国计算机等级考试二级笔试复习资料Word格式文档下载.docx
《全国计算机等级考试二级笔试复习资料Word格式文档下载.docx》由会员分享,可在线阅读,更多相关《全国计算机等级考试二级笔试复习资料Word格式文档下载.docx(28页珍藏版)》请在冰豆网上搜索。
算法中各种运算总是要施加到各个运算对象上,而这些运算对象又可能具有某种初始状态,这就是算法执行的起点或依据。
因此,一个算法执行的结果总是与输入的初始数据有关,不同的输入将会有不同的结果输出。
当输入不够或输入错误时,算法将无法执行或执行有错。
一般说来,当算法拥有足够的情报时,此算法才是有效的;
而当提供的情报不够时,算法可能无效。
综上所述,所谓算法,是一组严谨地定义运算顺序的规则,并且每一个规则都是有效的,且是明确的,此顺序将在有限的次数下终止。
3、算法复杂度主要包括时间复杂度和空间复杂度。
(1)算法时间复杂度是指执行算法所需要的计算工作量,可以用执行算法的过程中所需基本运算的执行次数来度量。
(2)算法空间复杂度是指执行这个算法所需要的内存空间。
1.2数据结构的基本概念
1、数据结构是指相互有关联的数据元素的集合。
2、数据结构主要研究和讨论以下三个方面的问题:
(1)数据集合中各数据元素之间所固有的逻辑关系,即数据的逻辑结构。
数据的逻辑结构包含:
1)表示数据元素的信息;
2)表示各数据元素之间的前后件关系。
(2)在对数据进行处理时,各数据元素在计算机中的存储关系,即数据的存储结构。
数据的存储结构有顺序、链接、索引等。
1)顺序存储。
它是把逻辑上相邻的结点存储在物理位置相邻的存储单元里,结点间的逻辑关系由存储单元的邻接关系来体现。
由此得到的存储表示称为顺序存储结构。
2)链接存储。
它不要求逻辑上相邻的结点在物理位置上亦相邻,结点间的逻辑关系是由附加的指针字段表示的。
由此得到的存储表示称为链式存储结构。
3)索引存储:
除建立存储结点信息外,还建立附加的索引表来标识结点的地址。
数据的逻辑结构反映数据元素之间的逻辑关系,数据的存储结构(也称数据的物理结构)是数据的逻辑结构在计算机存储空间中的存放形式。
同一种逻辑结构的数据可以采用不同的存储结构,但影响数据处理效率。
(3)对各种数据结构进行的运算。
3、数据结构的图形表示
一个数据结构除了用二元关系表示外,还可以直观地用图形表示。
在数据结构的图形表示中,对于数据集合D中的每一个数据元素用中间标有元素值的方框表示,一般称之为数据结点,并简称为结点;
为了进一步表示各数据元素之间的前后件关系,对于关系R中的每一个二元组,用一条有向线段从前件结点指向后件结点。
4、数据结构分为两大类型:
线性结构和非线性结构。
(1)线性结构(非空的数据结构)条件:
1)有且只有一个根结点;
2)每一个结点最多有一个前件,也最多有一个后件。
常见的线性结构有线性表、栈、队列和线性链表等。
(2)非线性结构:
不满足线性结构条件的数据结构。
常见的非线性结构有树、二叉树和图等。
1.3线性表及其顺序存储结构
1、线性表由一组数据元素构成,数据元素的位置只取决于自己的序号,元素之间的相对位置是线性的。
线性表是由n(n≥0)个数据元素组成的一个有限序列,表中的每一个数据元素,除了第一个外,有且只有一个前件,除了最后一个外,有且只有一个后件。
线性表中数据元素的个数称为线性表的长度。
线性表可以为空表。
线性表是一种存储结构,它的存储方式:
顺序和链式。
2、线性表的顺序存储结构具有两个基本特点:
(1)线性表中所有元素所占的存储空间是连续的;
(2)线性表中各数据元素在存储空间中是按逻辑顺序依次存放的。
由此可以看出,在线性表的顺序存储结构中,其前后件两个元素在存储空间中是紧邻的,且前件元素一定存储在后件元素的前面,可以通过计算机直接确定第i个结点的存储地址。
3、顺序表的插入、删除运算
(1)顺序表的插入运算:
在一般情况下,要在第i(1≤i≤n)个元素之前插入一个新元素时,首先要从最后一个(即第n个)元素开始,直到第i个元素之间共n-i+1个元素依次向后移动一个位置,移动结束后,第i个位置就被空出,然后将新元素插入到第i项。
插入结束后,线性表的长度就增加了1。
顺性表的插入运算时需要移动元素,在等概率情况下,平均需要移动n/2个元素。
(2)顺序表的删除运算:
在一般情况下,要删除第i(1≤i≤n)个元素时,则要从第i+1个元素开始,直到第n个元素之间共n-i个元素依次向前移动一个位置。
删除结束后,线性表的长度就减小了1。
进行顺性表的删除运算时也需要移动元素,在等概率情况下,平均需要移动(n-1)/2个元素。
插入、删除运算不方便。
1.4栈和队列
1、栈及其基本运算
栈是限定在一端进行插入与删除运算的线性表。
在栈中,允许插入与删除的一端称为栈顶,不允许插入与删除的另一端称为栈底。
栈顶元素总是最后被插入的元素,栈底元素总是最先被插入的元素。
即栈是按照“先进后出”或“后进先出”的原则组织数据的。
栈具有记忆作用。
栈的基本运算:
1)插入元素称为入栈运算;
2)删除元素称为退栈运算;
3)读栈顶元素是将栈顶元素赋给一个指定的变量,此时指针无变化。
栈的存储方式和线性表类似,也有两种,即顺序栈和链式栈。
2、队列及其基本运算
队列是指允许在一端(队尾)进入插入,而在另一端(队头)进行删除的线性表。
尾指针(Rear)指向队尾元素,头指针(front)指向排头元素的前一个位置(队头)。
队列是“先进先出”或“后进后出”的线性表。
队列运算包括:
1)入队运算:
从队尾插入一个元素;
2)退队运算:
从队头删除一个元素。
循环队列及其运算:
所谓循环队列,就是将队列存储空间的最后一个位置绕到第一个位置,形成逻辑上的环状空间,供队列循环使用。
在循环队列中,用队尾指针rear指向队列中的队尾元素,用排头指针front指向排头元素的前一个位置,因此,从头指针front指向的后一个位置直到队尾指针rear指向的位置之间,所有的元素均为队列中的元素。
循环队列中元素的个数=rear-front。
1.5线性链表
1、线性表顺序存储的缺点:
(1)插入或删除的运算效率很低。
在顺序存储的线性表中,插入或删除数据元素时需要移动大量的数据元素;
(2)线性表的顺序存储结构下,线性表的存储空间不便于扩充;
(3)线性表的顺序存储结构不便于对存储空间的动态分配。
2、线性链表:
线性表的链式存储结构称为线性链表,是一种物理存储单元上非连续、非顺序的存储结构,数据元素的逻辑顺序是通过链表中的指针链接来实现的。
因此,在链式存储方式中,每个结点由两部分组成:
一部分用于存放数据元素的值,称为数据域;
另一部分用于存放指针,称为指针域,用于指向该结点的前一个或后一个结点(即前件或后件),如下图所示:
线性链表分为单链表、双向链表和循环链表三种类型。
在单链表中,每一个结点只有一个指针域,由这个指针只能找到其后件结点,而不能找到其前件结点。
因此,在某些应用中,对于线性链表中的每个结点设置两个指针,一个称为左指针,指向其前件结点;
另一个称为右指针,指向其后件结点,这种链表称为双向链表,如下图所示:
3、线性链表的基本运算
(1)在线性链表中包含指定元素的结点之前插入一个新元素。
在线性链表中插入元素时,不需要移动数据元素,只需要修改相关结点指针即可,也不会出现“上溢”现象。
(2)在线性链表中删除包含指定元素的结点。
在线性链表中删除元素时,也不需要移动数据元素,只需要修改相关结点指针即可。
(3)将两个线性链表按要求合并成一个线性链表。
(4)将一个线性链表按要求进行分解。
(5)逆转线性链表。
(6)复制线性链表。
(7)线性链表的排序。
(8)线性链表的查找。
线性链表不能随机存取。
4、循环链表及其基本运算
在线性链表中,其插入与删除的运算虽然比较方便,但还存在一个问题,在运算过程中对于空表和对第一个结点的处理必须单独考虑,使空表与非空表的运算不统一。
为了克服线性链表的这个缺点,可以采用另一种链接方式,即循环链表。
与前面所讨论的线性链表相比,循环链表具有以下两个特点:
1)在链表中增加了一个表头结点,其数据域为任意或者根据需要来设置,指针域指向线性表的第一个元素的结点,而循环链表的头指针指向表头结点;
2)循环链表中最后一个结点的指针域不是空,而是指向表头结点。
即在循环链表中,所有结点的指针构成了一个环状链。
下图a是一个非空的循环链表,图b是一个空的循环链表:
循环链表的优点主要体现在两个方面:
一是在循环链表中,只要指出表中任何一个结点的位置,就可以从它出发访问到表中其他所有的结点,而线性单链表做不到这一点;
二是由于在循环链表中设置了一个表头结点,在任何情况下,循环链表中至少有一个结点存在,从而使空表与非空表的运算统一。
循环链表是在单链表的基础上增加了一个表头结点,其插入和删除运算与单链表相同。
但它可以从任一结点出发来访问表中其他所有结点,并实现空表与非空表的运算的统一。
1.6树与二叉树
1、树的基本概念
树是一种简单的非线性结构。
在树这种数据结构中,所有数据元素之间的关系具有明显的层次特性。
在树结构中,每一个结点只有一个前件,称为父结点。
没有前件的结点只有一个,称为树的根结点,简称树的根。
每一个结点可以有多个后件,称为该结点的子结点。
没有后件的结点称为叶子结点。
在树结构中,一个结点所拥有的后件的个数称为该结点的度,所有结点中最大的度称为树的度。
树的最大层次称为树的深度。
2、二叉树及其基本性质
(1)什么是二叉树
二叉树是一种很有用的非线性结构,它具有以下两个特点:
1)非空二叉树只有一个根结点;
2)每一个结点最多有两棵子树,且分别称为该结点的左子树与右子树。
根据二叉树的概念可知,二叉树的度可以为0(叶结点)、1(只有一棵子树)或2(有2棵子树)。
(2)二叉树的基本性质
性质1在二叉树的第k层上,最多有个结点。
性质2深度为m的二叉树最多有个个结点。
性质3在任意一棵二叉树中,度数为0的结点(即叶子结点)总比度为2的结点多一个。
性质4具有n个结点的二叉树,其深度至少为,其中表示取的整数部分。
3、满二叉树与完全二叉树
满二叉树:
除最后一层外,每一层上的所有结点都有两个子结点。
完全二叉树:
除最后一层外,每一层上的结点数均达到最大值;
在最后一层上只缺少右边的若干结点。
根据完全二叉树的定义可得出:
度为1的结点的个数为0或1。
下图a表示的是满二叉树,下图b表示的是完全二叉树:
完全二叉树还具有如下两个特性:
性质5具有n个结点的完全二叉树深度为。
性质6设完全二叉树共有n个结点,如果从根结点开始,按层序(每一层从左到右)用自然数1,2,…,n给结点进行编号,则对于编号为k(k=1,2,…,n)的结点有以下结论:
①若k=1,则该结点为根结点,它没有父结点;
若k>
1,则该结点的父结点的编号为INT(k/2)。
②若2k≤n,则编号为k的左子结点编号为2k;
否则该结点无左子结点(显然也没有右子结点)。
③若2k+1≤n,则编号为k的右子结点编号为2k+1;
否则该结点无右子结点。
4、二叉树的存储结构
在计算机中,二叉树通常采用链式存储结构。
与线性链表类似,用于存储二叉树中各元素的存储结点也由两部分组成
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全国 计算机等级考试 二级 笔试 复习资料