大数据挖掘聚类算法课程设计报告材料Word文档下载推荐.docx
- 文档编号:15228552
- 上传时间:2022-10-28
- 格式:DOCX
- 页数:14
- 大小:180.01KB
大数据挖掘聚类算法课程设计报告材料Word文档下载推荐.docx
《大数据挖掘聚类算法课程设计报告材料Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《大数据挖掘聚类算法课程设计报告材料Word文档下载推荐.docx(14页珍藏版)》请在冰豆网上搜索。
数据集中全部数据的组织结构是:
先给出某一科属的植物及其所有分布地区,然后给出该科属下的具体植物及其分布地区。
例如:
abelmoschus,ct,dc,fl,hi,il,ky,la,md,mi,ms,nc,sc,va,pr,vi
abelmoschusesculentus,ct,dc,fl,il,ky,la,md,mi,ms,nc,sc,va,pr,vi
abelmoschusmoschatus,hi,pr
上述数据中第行给出了所有属于abelmoschus这一科属的植物的分布地区,接下来的两行分别列出了属于abelmoschus科属的两种具体植物及其分布地区。
从中可以看出后两行给出的所有地区的并集正是第一行给出的地区集合。
在聚类过程中第行数据是无用的,因此要对其进行清理。
2.2数据变换
本实验是依据植物的分布区域进行聚类,所给数据集中的分布区域是字符串形式,不适合进行聚类,因此将其变换成适合聚类的数值形式。
具体思想如下:
数据集中总共包含68个区域,每一种植物的分布区域是这68个区域中的一部分。
本实验中将68个区域看成是数据对象的68个属性,这68个属性是二元类型的变量,其值只能去0或者1。
步骤如下:
1.把68个区域按一定顺序存放在字符串数组(记为str)中(顺序可以自己定,确定后不能改变)。
2.为数据集中的每个数据对象设置一个长度为68字符串数组,初始元素值全为0。
将数据对象的分布区域逐个与str中的所有元素比较。
如果存在于str中下标i的位置,就将该数据对象的字符串数组的第i位置为1。
例如,一个数据对象为:
abiesfraseri,ga,nc,tn,va。
其分布区域包含ga,nc,tn和va四个地区,将这四个地区逐个与str中全部68个元素比较。
假设这四个地区分别存在于str中的第0,1,2,3位置,则将为该数据对象设置的字符串数组中第0,1,2,3位置全部置为1。
★数据预处理代码(包括数据清理和数据变换):
publicArrayList<
String>
getRaw_DataSet(){
ArrayList<
raw_dataSet=newArrayList<
();
//定义集合存储从本地获取的数据
BufferedReaderbufferedReader=null;
FileReaderfileReader=null;
FiledataFile=newFile(this.fileName);
if(dataFile.exists()){//如果数据文件存在
try{
fileReader=newFileReader(this.fileName);
bufferedReader=newBufferedReader(fileReader);
Stringdata=null;
while((data=bufferedReader.readLine())!
=null){
if(isRightData(data))
raw_dataSet.add(data);
}
}catch(Exceptione){
e.printStackTrace();
}
}else
this.isFileExit=false;
returnraw_dataSet;
}//getRaw_DataSet,从本地txt文件获取数据集
publicArrayList<
DataItem>
getFinished_DataSet(){//获取经过预处理,用来进行聚类的数据
finished_DataSet=newArrayList<
temp_DataSet=this.getRaw_DataSet();
for(inti=0;
i<
temp_DataSet.size();
i++){
ArrayList<
eachRomItem=null;
eachRomItem=this.spilt(temp_DataSet.get(i),'
'
);
//除去"
"
后的每一行数据
DataItemdata_Item=newDataItem(eachRomItem,true);
finished_DataSet.add(data_Item);
}//for
returnfinished_DataSet;
}
publicbooleanisRightData(Stringdata){//筛选出合适的数据
tempArrayList=newArrayList<
tempArrayList=spilt(data,'
'
if(tempArrayList.size()<
=1)
returnfalse;
returntrue;
}//isRightData,筛选出合适的数据
spilt(Stringstr,charch){
ArrayList<
words=newArrayList<
//用来存放找到的单词
intbeginIndex=0;
str.length();
if(str.charAt(i)!
=ch){
if(i!
=str.length()-1)
continue;
else{
words.add(str.substring(beginIndex));
}else{
Stringtemp=str.substring(beginIndex,i);
words.add(temp);
beginIndex=i+1;
returnwords;
3.聚类分析
3.1算法描述
本实验采用了聚类分析中常用的K均值(K-Means)算法。
该算法思想如下:
算法:
K均值。
用于划分的K均值算法,每个簇的中心用簇中对象的均值表示。
输入:
■k:
簇的属目
■D:
包含n个对象的数据集。
输出:
k个簇的集合。
方法:
(1)从D中任意选择k个对象作为初始簇中心;
(2)repeat
(3)根据簇中对象的均值,将每个对象(再)指派到最相似的簇;
(4)更新簇均值,既计算每个簇中对象的均值;
(5)until不再发生变化
根据上述算法,结合本实验实际情况和数据集特征给出程序的执行流程图:
开始
从本地读取数据文件
数据预处理
输入k,簇的个数
在数据集中随机选取k个数据对象作为初始中心点
迭代开始。
将数据集中每个数据对象与k个中心点作比较,把每个对象分到与其最相似的中心点所在的簇中
计算每个簇中对象的均值,作为该簇新的中心点
满足迭代终止条件
迭代终止,输出结果。
否
是
图2程序执行流程
针对上面的流程图,有几点说明:
1.数据预处理主要包括前述数据清理和数据变换,最终生成用于聚类分析的数据集。
2.簇的个数k由用户指定,k越大聚类过程耗时越久。
3.图中“最相似”意思就是距离中心点距离最近,本实验中采用欧几里得距离,其定义如下:
其中和是两个n维数据对象。
在本实验中,和分别代表为i,j两个数据对象设置的字符串数组(参看2.2)中下标为1的元素值,此处n为68。
4.流程图中的终止条件指的是:
前后两次中心点之间的距离(仍然用欧几里得距离)是否小于设定的值。
例如,第n次迭代完成后重新生成了k个新的中心点,计算k个新中心点与k个旧的中心点距离之和并将结果与设定的值比较,若小于设定值则终止迭代,聚类完成,否则继续迭代。
3.2算法实现
图3代码文件的组织结构
上图是本实验源码的组织结构,该项目包含五个Java类。
每个类的功能描述如下:
◆Cluster.java类该类定义了簇的结构,包含簇标志,簇成员和簇中心点三个字段。
该类的每一个实例对应于聚类过程中的一个簇。
◆DataItem.java类该类定义了数据对象的结构,主要包含数据对象名称(即植物名称)和数据对象字符串数组(即植物的分布区域)。
该类的每一个实例对应于数据集中的一个数据对象。
◆Main.java类该类是程序的核心类,主要功能是执行聚类过程,包括中心点的选取与更新,计算各个数据对象与中心点之间的距离并把其派分到最相似的簇等。
◆ReadData.java类该类主要功能是生成聚类过程适用的数据集,包括读取文件,数据预处理等。
◆Tools.java类该类是一个工具类,其中定义了多个程序中使用到的静态方法。
★Mian.java类中的核心代码:
(1)随机选取中心点
publicvoidsetCenter_ran(){//第一次,从数据集中随机选取中心点
beginTime=System.currentTimeMillis();
System.out.println("
聚类过程开始,开始于:
"
+Tools.currentTime());
Randomran=newRandom();
intorder=0;
//随机选取中心点
while(this.center.size()<
numOfCluster){
order=ran.nextInt(toBeProcessed.size());
if(Tools.isProCener(toBeProcessed.get(order),this.center))
this.center.add(toBeProcessed.get(order));
}//while
(2)初始化簇
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数据 挖掘 算法 课程设计 报告 材料