非负矩阵分解及在人脸识别的应用PPT格式课件下载.ppt
- 文档编号:15128266
- 上传时间:2022-10-27
- 格式:PPT
- 页数:30
- 大小:1.02MB
非负矩阵分解及在人脸识别的应用PPT格式课件下载.ppt
《非负矩阵分解及在人脸识别的应用PPT格式课件下载.ppt》由会员分享,可在线阅读,更多相关《非负矩阵分解及在人脸识别的应用PPT格式课件下载.ppt(30页珍藏版)》请在冰豆网上搜索。
D.D.LeeandS.Seung,”Learningthepartsofobjectsbynon-negativematrixfactorization”Nature,vol.401,pp.788-791,1999作者的相关信息DanielD.Lee,Ph.D.lAssociateProfessorDept.ofElectricalandSystemsEngineeringDept.ofBioengineering(Secondary)GRASP(GeneralRobotics,Automation,Sensing,Perception)Labl203BMoore/6314UniversityofPennsylvania200S.33rdStreetPhiladelphia,PA19104215-898-8112215-573-2068(FAX)lEmail:
ddleeseas.upenn.edulhttp:
/www.seas.upenn.edu/ddlee/H.SebastianSeunglProfessorofComputationalNeuroscience,MITInvestigator,HowardHughesMedicalInstitutelMIT,46-506543VassarSt.Cambridge,MA02139voice:
617-252-1693seungmit.edulAdministrativeassistant:
AmyDunnvoice:
617-452-2694fax:
617-452-2913adunnmit.edulhttp:
/hebb.mit.edu/people/seung/ProblemStatementGivenasetofimages:
1.Createasetofbasisimagesthatcanbelinearlycombinedtocreatenewimages2.Findthesetofweightstoreproduceeveryinputimagefromthebasisimages3.DimensionreductionlPCAlNMFlLNMFlFNMFlWNMFMainlyDiscussPCAlFindasetoforthogonalbasisimageslThereconstructedimageisalinearcombinationofthebasisimagesWhatdontwelikeaboutPCA?
lPCAinvolvesaddingupsomebasisimagesthensubtractingotherslBasisimagesarentphysicallyintuitivelSubtractingdoesntmakesenseincontextofsomeapplicationslHowdoyousubtractaface?
lWhatdoessubtractionmeaninthecontextofdocumentclassification?
backNon-negativeMatrixFactorizationlLikePCA,exceptthecoefficientsinthelinearcombinationcannotbenegativeNon-negativematrixfactorization(NMF)(Lee&
Seung-2001)NMFgivesPartbasedrepresentation(Lee&
SeungNature1999)NMFisbasedonGradientDescentNMF:
VWHs.t.Wi,d,Hd,j0LetCbeagivencostfunction,thenupdatetheparametersaccordingto:
TheideabehindmultiplicativeupdatesPositivetermNegativetermTheNMFdecompositionisnotuniqueNMFonlyuniquewhendataadequatelyspansthepositiveorthant(Donoho&
Stodden-2004)NMFBasisImagesnmf_basislOnlyallowingaddingofbasisimagesmakesintuitivesenseHasphysicalanalogueinneuronslForcingthereconstructioncoefficientstobepositiveleadstonicebasisimagesToreconstructimages,allyoucandoisaddinmorebasisimagesThisleadstobasisimagesthatrepresentpartsFaceslTrainingset:
2429exampleslFirst25examplesshownatrightlSetconsistsof19x19centeredfaceimagesFaceslBasisImages:
Rank:
49Iterations:
50Facesx=OriginalFacesx=OriginalbackbackExampleLocalnon-negativematrixfactorizationLettingLNMFisaimedatlearninglocalfeaturesbyimposingthefollowingthreeadditionalconstraintsontheNMFbasis:
backbackLNMF_basisLNMF_basisFishernon-negativematrixfactorizationbackbackWeightedNMFbackback结论及未来工作l综上所述,非负矩阵分解是一种的提取图像局部特征信息的有效的方法,目前在很多领域得到广泛应用,值得我们关注。
l问题
(1)非平衡样本集识别率低的问题
(2)权重选取问题参考文献l1D.D.LeeandH.S.Seung,“Learningthepartsofobjectsbynon-negativematrixfactorization”,Nature,vol.401,pp.788-791,1999l2D.D.LeeandH.S.Seung“Algorithmsfornon-negativeMatrixfactorization”,inProceedingsofNeuralInformationProcessingSystems,2000.l3S.Z.Li,X.Hou,H.J.Zhang,andQ.Cheng,“Learningspatiallylocalized,parts-basedrepresentation”,Proc.IEEEInt.Conf.ComputerVisionandPatternRecognition,2001,pp.207-212l4J.LuandY.-P.Tan,“Doublyweightednonnegativematrixfactorizationforimbalancedfacerecognition”,Proc.IEEEInt.Conf.Acoustics,Speech,andSignalProcessing,2009,pp.877C880
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 矩阵 分解 识别 应用