万有引力定律 人造地球卫星Word文件下载.docx
- 文档编号:15123373
- 上传时间:2022-10-27
- 格式:DOCX
- 页数:14
- 大小:194.67KB
万有引力定律 人造地球卫星Word文件下载.docx
《万有引力定律 人造地球卫星Word文件下载.docx》由会员分享,可在线阅读,更多相关《万有引力定律 人造地球卫星Word文件下载.docx(14页珍藏版)》请在冰豆网上搜索。
实验原理是力矩平衡。
实验中的方法有力学放大(借助于力矩将万有引力的作用效果放大)和光学放大(借助于平面境将微小的运动效果放大)。
万有引力常量的测定使卡文迪许成为“能称出地球质量的人”:
对于地面附近的物体m,有(式中RE为地球半径或物体到地球球心间的距离),可得到。
(2)定律的适用条件:
严格地说公式只适用于质点间的相互作用,当两个物体间的距离远远大于物体本身的大小时,公式也可近似使用,但此时r应为两物体重心间的距离.对于均匀的球体,r是两球心间的距离.
当两个物体间的距离无限靠近时,不能再视为质点,万有引力定律不再适用,不能依公式算出F近为无穷大。
注意:
万有引力定律把地面上的运动与天体运动统一起来,是自然界中最普遍的规律之一,式中引力恒量G的物理意义是:
G在数值上等于质量均为1kg的两个质点相距1m时相互作用的万有引力.
(3)地球自转对地表物体重力的影响。
重力是万有引力产生的,因为地球的自转,因而地球表面的物体随地球自转时需要向心力.重力实际上是万有引力的一个分力.另一个分力就是物体随地球自转时需要的向心力,如图所示,在纬度为的地表处,万有引力的一个分力充当物体随地球一起绕地轴自转所需的向心力F向=mRcos·
ω2(方向垂直于地轴指向地轴),而万有引力的另一个分力就是通常所说的重力mg,其方向与支持力N反向,应竖直向下,而不是指向地心。
因为纬度的变化,物体做圆周运动的向心力F向持续变化,因而表面物体的重力随纬度的变化而变化,即重力加速度g随纬度变化而变化,从赤道到两极R逐渐减小,向心力mRcos·
ω2减小,重力逐渐增大,相对应重力加速度g也逐渐增大。
在赤道处,物体的万有引力分解为两个分力F向和m2g刚好在一条直线上,则有F=F向+m2g,所以m2g=F一F向=G-m2Rω自2。
物体在两极时,其受力情况如图丙所示,这时物体不再做圆周运动,没有向心力,物体受到的万有引力F引和支持力N是一对平衡力,此时物体的重力mg=N=F引。
O
O′
N
F心
ω
m
F引
mg
甲
综上所述
重力大小:
两个极点处最大,等于万有引力;
赤道上最小,其他地方介于两者之间,但差别很小。
重力方向:
在赤道上和两极点的时候指向地心,其地方都不指向地心,但与万有引力的夹角很小。
因为地球自转缓慢,物体需要的向心力很小,所以大量的近似计算中忽略了自转的影响,在此基础上就有:
地球表面处物体所受到的地球引力近似等于其重力,即≈mg
说明:
因为地球自转的影响,从赤道到两极,重力的变化为千分之五;
地面到地心的距离每增加一千米,重力减少不到万分之三,所以,在近似的计算中,认为重力和万有引力相等。
万有引力定律的应用:
基本方法:
卫星或天体的运动看成匀速圆周运动,F万=F心(类似原子模型)
方法:
轨道上正常转:
地面附近:
G=mgGM=gR2(黄金代换式)
(1)天体表面重力加速度问题
通常的计算中因重力和万有引力相差不大,而认为两者相等,即m2g=G,g=GM/R2常用来计算星球表面重力加速度的大小,在地球的同一纬度处,g随物体离地面高度的增大而减小,即gh=GM/(R+h)2,比较得gh=()2·
g
设天体表面重力加速度为g,天体半径为R,由mg=得g=,由此推得两个不同天体表面重力加速度的关系为
(2)计算中心天体的质量
某星体m围绕中心天体m中做圆周运动的周期为T,圆周运动的轨道半径为r,则:
由得:
例如:
利用月球能够计算地球的质量,利用地球能够计算太阳的质量。
能够注意到:
环绕星体本身的质量在此是无法计算的。
(3)计算中心天体的密度
ρ===
由上式可知,只要用实验方法测出卫星做圆周运动的半径r及运行周期T,就能够算出天体的质量M.若知道行星的半径则可得行星的密度
(4)发现未知天体
用万有引力去分析已经发现的星体的运动,能够知道在此星体附近是否有其他星体,例如:
历史上海王星是通过对天王星的运动轨迹分析发现的。
冥王星是通过对海王星的运动轨迹分析发现的
人造地球卫星。
这里特指绕地球做匀速圆周运动的人造卫星,实际上绝大部分卫星轨道是椭圆,而中学阶段对做椭圆运动的卫星一般不作定量分析。
1、卫星的轨道平面:
因为地球卫星做圆周运动的向心力是由万有引力提供的,所以卫星的轨道平面一定过地球球心,球球心一定在卫星的轨道平面内。
2、原理:
因为卫星绕地球做匀速圆周运动,所以地球对卫星的引力充当卫星所需的向心力,于是有
实际是牛顿第二定律的具体体现
3、表征卫星运动的物理量:
线速度、角速度、周期等:
(1)向心加速度与r的平方成反比。
=当r取其最小值时,取得最大值。
a向max==g=9.8m/s2
(2)线速度v与r的平方根成反比
v=∴当h↑,v↓
当r取其最小值地球半径R时,v取得最大值。
vmax===7.9km/s
(3)角速度与r的三分之三次方成百比
=∴当h↑,ω↓
当r取其最小值地球半径R时,取得最大值。
max==≈1.23×
10-3rad/s
(4)周期T与r的二分之三次方成正比。
T=2∴当h↑,T↑当r取其最小值地球半径R时,T取得最小值。
Tmin=2=2≈84min
卫星的能量:
(类似原子模型)r增v减小(EK减小<
Ep增加),所以E总增加;
需克服引力做功越多,地面上需要的发射速度越大
应该熟记常识:
地球公转周期1年,自转周期1天=24小时=86400s,地球表面半径6.4x103km表面重力加速度g=9.8m/s2月球公转周期30天
4.宇宙速度及其意义
(1)三个宇宙速度的值分别为
第一宇宙速度(又叫最小发射速度、最大环绕速度、近地环绕速度):
物体围绕地球做匀速圆周运动所需要的最小发射速度,又称环绕速度,其值为:
第一宇宙速度的计算.
方法一:
地球对卫星的万有引力就是卫星做圆周运动的向心力.
G=m,v=。
当h↑,v↓,所以在地球表面附近卫星的速度是它运行的最大速度。
其大小为r>>h(地面附近)时,=7.9×
103m/s
方法二:
在地面附近物体的重力近似地等于地球对物体的万有引力,重力就是卫星做圆周运动的向心力.
.当r>>h时.gh≈g所以v1==7.9×
第二宇宙速度(脱离速度):
如果卫生的速大于而小于,卫星将做椭圆运动。
当卫星的速度等于或大于的时候,物体就能够挣脱地球引力的束缚,成为绕太阳运动的人造行星,或飞到其它行星上去,把叫做第二宇宙速度,第二宇宙速度是挣脱地球引力束缚的最小发射速度。
第三宇宙速度:
物体挣脱太阳系而飞向太阳系以外的宇宙空间所需要的最小发射速度,又称逃逸速度,其值为:
(2)当发射速度v与宇宙速度分别有如下关系时,被发射物体的运动情况将有所不同
①当v<v1时,被发射物体最终仍将落回地面;
②当v1≤v<v2时,被发射物体将环绕地球运动,成为地球卫星;
③当v2≤v<v3时,被发射物体将脱离地球束缚,成为环绕太阳运动的“人造行星”;
④当v≥v3时,被发射物体将从太阳系中逃逸。
5.同步卫星(所有的通迅卫星都为同步卫星)
⑴同步卫星。
“同步”的含义就是和地球保持相对静止(又叫静止轨道卫星),所以其周期等于地球自转周期,既T=24h,
⑵特点
(1)地球同步卫星的轨道平面,非同步人造地球卫星其轨道平面可与地轴有任意夹角,而同步卫星一定位于赤道的正上方,不可能在与赤道平行的其他平面上。
这是因为:
不是赤道上方的某一轨道上跟着地球的自转同步地作匀速圆运动,卫星的向心力为地球对它引力的一个分力F1,而另一个分力F2的作用将使其运行轨道靠赤道,故此,只有在赤道上空,同步卫星才可能在稳定的轨道上运行。
(2)地球同步卫星的周期:
地球同步卫星的运转周期与地球自转周期相同。
(3)同步卫星必位于赤道上方h处,且h是一定的.
得故
(4)地球同步卫星的线速度:
环绕速度
由得
(5)运行方向一定自西向东运行
人造天体在运动过程中的能量关系
当人造天体具有较大的动能时,它将上升到较高的轨道运动,而在较高轨道上运动的人造天体却具有较小的动能。
反之,如果人造天体在运动中动能减小,它的轨道半径将减小,在这个过程中,因引力对其做正功,故导致其动能将增大。
同样质量的卫星在不同高度轨道上的机械能不同。
其中卫星的动能为,因为重力加速度g随高度增大而减小,所以重力势能不能再用Ek=mgh计算,而要用到公式(以无穷远处引力势能为零,M为地球质量,m为卫星质量,r为卫星轨道半径。
因为从无穷远向地球移动过程中万有引力做正功,所以系统势能减小,为负。
)所以机械能为。
同样质量的卫星,轨道半径越大,即离地面越高,卫星具有的机械能越大,发射越困难。
『题型解析』
类型题:
万有引力定律的直接应用
【例题】下列关于万有引力公式的说法中准确的是()
A.公式只适用于星球之间的引力计算,不适用于质量较小的物体
B.当两物体间的距离趋近于零时,万有引力趋近于无穷大
C.两物体间的万有引力也符合牛顿第三定律
D.公式中万有引力常量G的值是牛顿规定的
【例题】设想把质量为m的物体,放到地球的中心,地球的质量为M,半径为R,则物体与地球间的万有引力是()
A.B.无穷大C.零D.无法确定
【例题】设想人类开发月球,持续地把月球上的矿藏搬运到地球上.假如经过长时间开采后,地球仍可看成均匀球体,月球仍沿开采前的圆轨道运动则与开采前比较
A.地球与月球间的万有引力将变大
B.地球与月球间的万有引力将减小
C.月球绕地球运动的周期将变长
D.月球绕地球运动的周期将变短
(上海卷理科综合)7.有同学这样探究太阳的密度:
正午时分让太阳光垂直照射一个当中有小孔的黑纸板,接收屏上出现一个小圆斑;
测量小圆斑的直径和黑纸板到接收屏的距离,可大致推出太阳直径。
他掌握的数据是:
太阳光传到地球所需的时间、地球的公转周期、万有引力恒量;
在最终得出太阳密度的过程中,他用到的物理规律是小孔成像规律和()
A.牛顿第二定律B.万有引力定律
C.万有引力定律、牛顿第二定律D.万有引力定律、牛顿第三定律
重力加速度g随离高度h变化情况
【例题】设地球表面的重力加速度为g,物体在距地心4R(R是地球半径)处,因为地球的引力作用而产生的重力加速度g,,则g/g,为()
A、1;
B、1/9;
C、1/4;
D、1/16。
【例题】火星的质量和半径分别约为地球的和,地球表面的重力加速度为g,则火星表面的重力加速度约为()
(A)0.2g(B)0.4g(C)2.5g(D)5g
用万有引力定律求天体的质
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 万有引力定律 人造地球卫星