图形的变换初三数学专题复习Word文档下载推荐.docx
- 文档编号:15071588
- 上传时间:2022-10-27
- 格式:DOCX
- 页数:16
- 大小:191.58KB
图形的变换初三数学专题复习Word文档下载推荐.docx
《图形的变换初三数学专题复习Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《图形的变换初三数学专题复习Word文档下载推荐.docx(16页珍藏版)》请在冰豆网上搜索。
2.结合具体问题大胆尝试,动手操作平移、旋转,探究发现其内在规律是解答操作题的基本方法。
3.注重图形与变换的创新题,弄清其本质,掌握其基本的解题方法,尤其是折叠与旋转等。
典例分析:
例1如图9-1,把一个正方形三次对折后沿虚线剪下,则所得图形是()
【考点要求】本题考查学生轴对称知识的灵活应用。
【思路点拔】通过实物的演示或者操作以及空间想象,不难得到正确答案。
【方法点拨】在解答图形的折叠问题时,有时可借助实物进行操作、演示,帮助理解,从而弥补空间思维上出现的盲区。
例2如图9-2,一只小狗正在平面镜前欣赏自己的全身像,此时,它所看到的全身像()
【考点要求】本题考查平面镜的轴对称变换。
【思路点拔】观察所给的“小狗照镜子”图,可以发现小狗的尾巴向左,并且正面向镜子,由于平面镜成像是轴对称变换,由性质可知,像的尾巴应向左且正面向前。
【答案】选A。
【错解剖析】部分学生未能抓住平面镜成像的轴对称变换特性而选择错误答案。
解题关键:
先分析清问题是何种对称变换,然后利用性质解题。
例3如图9-3,下列图案②③④⑤⑥⑦中,是由①平移得出的,是由①平移且旋转得出的。
【考点要求】本题考查平移、旋转的定义。
【思路点拔】图①中的鸽子是头向左,尾巴向右展翅飞翔,平移后的图形应与其方向保持一致,而如果经过旋转后则会发生方向上的改变。
【答案】③⑤是由①平移得出的,②④⑥⑦是由①平移且旋转得出的。
【错解剖析】本题需熟悉平移与旋转的性质,同时还需要一定的空间想象能力。
例4已知三个数1,2,,请你再添上一个(只填一个)数,使它们能构成一个比例式,则这个数是_________.
【考点要求】本题考查比例式的概念。
【思路点拔】因为所添数字位置未作要求,因而有多种可能性,设所添数字为x,则有以下几种可能,,,。
【答案】2或或。
【思路点拔】这是一道开放型试题,由于题中没有告知构成比例的各数顺序,故应考虑各种可能位置.
以x为比例外项,则另一个比例外项可能是1、2或.
例5如图9-4,在△ABC中,AC>
AB,点D在AC边上(点
D不与A、C重合),若再增加上条件就能使△ABD∽
△ACB,则这个条件可以是_______.
【考点要求】本题考查三角形相似的判定方法的运用。
【思路点拔】由于所识别的两三角形隐含着一个公共
角∠A,因此依照识别方法,只要再附加条件∠ABD=∠C,
∠ADB=
∠ABC,或即可.
【答案】∠ABD=∠C,∠ADB=∠ABC,。
【错解剖析】部分学生不熟悉三角形相似的判定方法,易错用“边边角”进行判定,也有学生不注意两个三角形顶点的对应。
突破方法:
本题答案只要求填写一个,为确保正确,可根据△ABD∽△ACB找出一对相等的对应角。
例6如图9-6,AD是直角△ABC斜边上的高,DE⊥DF,且DE和DF分别交AB、AC于E、F.
求证:
。
【考点要求】本题考查利用相似证明比例线段问题。
【思路点拔】∵∠BAC=90°
AD⊥BC,
∴∠B+∠C=90°
∠DAC+∠C=90°
.
∴∠B=∠DAC.
同理∠C=∠BAD.
又∵∠ADE+∠ADF=90°
∠CDF+∠ADF=90°
∴∠ADE=∠CDF.
又∵∠BED=∠BAD+∠ADE,∠AFD=∠C+∠CDF.
∴∠BED=∠AFD.
∴△BED∽△AFD.
∴。
【方法点拔】所证比例式中四条线段为△AFD与△BDE的边,只需证△AFD与△BDE相似即可.
证明比例式或等积式的基本方法是证明包含比例式或等积式中的四条线段所在的两三角形相似.如果直接证明不容易,则可等线段转化或等比转化.
●拓展演练
一、选择题
1.在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转。
下列图案中,不能由一个图形通过旋转而构成的是()
2.下列各图中,既是轴对称图形又是中心对称图形的是()
3.如图,已知D、E分别是△ABC的AB、AC边上一点,DE∥BC,且四边形=1:
3,那么AD:
AB等于()
A.B.C.D.
4.如图是用杠杆撬石头的示意图,C是支点,当用力压杠杆的A端时,杠杆绕C点转动,另一端B向上翘起,石头就被撬动.现有一块石头,要使其滚动,杠杆的B端必须向上翘起10cm,已知杠杆的动力臂AC与阻力臂BC之比为5:
1,则要使这块石头滚动,至少要将杠杆的A端下压()
A.100cmB.60cmC.50cmD.10cm
5.把正方形ABCD沿着对角线AC的方向平移到正方形A′B′C′D′的位置,它们的重叠部分(图中的阴影部分)的面积是正方形ABCD面积的一半,若AC=,则正方形平移的距离AA′是().
A.1B.C.D.
6.如图13,已知梯形ABCD中,AD∥BC,对角线AC、BD分别交中位线EF于点H、G,且EG:
GH:
HF=1:
2:
1,那么AD:
BC等于()
A.2:
3B.3:
5C.1:
3D.1:
2
7.同学们曾玩过万花筒,它是由三块等宽等长的玻璃片围成的.如图是看到的万花筒的一个图案,图中所有小三角形均是全等的等边三角形,其中的菱形AEFG可以看成是把菱形ABCD以A为中心()
A.顺时针旋转60°
得到B.顺时针旋转120°
得到
C.逆时针旋转60°
得到D.逆时针旋转120°
8.已知∠AOB=30°
,点P在∠AOB内部,P1与P关于OB对称,P2与P关于OA对称,则P1,O,P2三点所构成的三角形是( )
A.直角三角形B.钝角三角形
C.等腰三角形D.等边三角形
9.点P是△ABC中AB边上的一点,过点P作直线(不与直线AB重合)截△ABC,使截得的三角形与原三角形相似.满足这样条件的直线最多有()
A.2条B.3条C.4条D.5条
10.如图,菱形纸片ABCD的一内角为60°
.边长为2,将它绕对角线的交点O顺时针旋转90°
后到A′B′C′D′位置,则旋转前后两菱形重叠部分多边形的周长为()
A.8B.4(-1)C.8(-1)D.4(+1)
二、填空题
11.在你所学过的几何图形中,写出两个既是轴对称图形又是中心对称图形的图形名称:
12.若两个相似三角形的相似比是2:
3,则这两个三角形对应中线的比是__________.
13.由16个相同的小正方形拼成的正方形网格,现将其中的两个小正方形涂黑(如右图)。
请你用两种不同的方法分别在下图中再将两个空白的小正方形涂黑,使它成为轴对称图形。
14.如图,AD是ΔABC的中线,∠ADC=45°
,把ΔADC沿AD对折,点C落在点C′的位置,则BC′与BC之间的数量关系是.
15.如图,已知∠1=∠2,若再增加一个条件就能使结论“AB·
DE=AD·
BC”成立,则这个条件可以是_________________.
16.如图,在正方形ABCD中,F是AD的中点,BF与AC交于点G,则△BGC与四边形CGFD的面积之比是________.
17.在△ABC和△A′B′C′中,有下列条件:
①;
②;
③∠A=∠A′;
④∠B=∠B′;
⑤∠C=∠C′.如果从中任取两个条件组成一组,那么能判断△ABC∽△A′B′C′的共有_______组.
三、解答题
18.已知,点P是正方形ABCD内的一点,连PA、PB、PC.
(1)将△PAB绕点B顺时针旋转90°
到△P′CB的位置(如图1).
①设AB的长为a,PB的长为b(b<
a),求△PAB旋转到△P′CB的过程中边PA所扫过区域(图1中阴影部分)的面积;
②若PA=2,PB=4,∠APB=135°
,求PC的长.
(2)如图2,若PA2+PC2=2PB2,请说明点P必在对角线AC上.
19.实验与推理如图14―1,14―2,四边形ABCD是正方形,M是AB延长线上一点。
直角三角尺的一条直角边经过点D,且直角顶点E在AB边上滑动(点E不与点A,B重合),另一条直角边与∠CBM的平分线BF相交于点F。
⑴如图14―1,当点E在AB边的中点位置时:
①通过测量DE,EF的长度,猜想DE与EF满足的数量关系是;
②连接点E与AD边的中点N,猜想NE与BF满足的数量关系是;
③请证明你的上述两猜想。
⑵如图14―2,当点E在AB边上的任意位置时,请你在AD边上找到一点N,使得NE=BF,进而猜想此时DE与EF有怎样的数量关系。
●习题答案专题九《图形与变换》
1.【答案】C[点拨:
能由旋转而构成的图形必须是旋转对称图形,C只是轴对称图形]
2.【答案】C[点拨:
B即不是轴对称图形,也不是中心对称图形]
3.【答案】C[点拨:
由四边形=1:
3,可知=1:
4,根据相似三角形面积比等于相似比的平方可得AD:
AB=1:
2]
4.【答案】C[点拨:
根据相似三角形的性质,可求得A端要向下压50cm,也可利用物理学中的杠杆定律解题]
5.【答案】D[点拨:
因为AC=,所以正方形ABCD的面积等于1,所以阴影小正方形的面积等于,其边长等于,所以A′C=1,所以AA′=]
6.【答案】C[点拨:
设,则,根据三角形中位线的性质可得,,所以AD:
BC=1:
3]
7.【答案】C[点拨:
菱形ABCD中AB边的对应边为AE,所以旋转角为∠BAE=120°
]
8.【答案】D[点拨:
根据题目描述,画出图形,利用轴对称性质容易得到结果]
9.【答案】C[点拨:
过点P可分别作AC、BC的平行线,由此可得相似三角形,另外还可作与AB相交的两条直线,构造相似三角形]
10.【答案】C[根据旋转性质,可以知道所得阴影部分图形的边长相等,再根据三角形全等和勾股定理可证得其长等于AB′=-1,从而求得周长]
11.【答案】菱形、圆[点拨:
比如矩形、正方形、菱形、圆等]
12.【答案】2:
3[根据相似三角形面积之比等于相似比的平方可求得结果]
13.【答案】略[点拨:
本题没有固定答案,有多种答案可选择]
14.【答案】BC′=BC[点拨:
因为∠ADC=45°
,由轴对称性质可知DC′=DC,∠C′DC=90°
.又BD=CD,由勾股定理可知,BC′=BC]
15.【答案】∠B=∠D[点拨:
本题答案不唯一,要结论成立,只需△ABC∽△ADE]
16.【答案】4:
5[点拨:
容易证明△AFG∽△CBG,因为F是AD中点,所以FG︰BG=1︰2,又△AFG与△ABG等高,所以=2︰1,所以△BGC与四边形CGFD的面积之比是4:
5]
17.【答案】6组[点拨:
根据三角形相似的判定,有三组对应边的比相等,两个对应角相等,两组对应边的比相等且夹角
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 图形 变换 初三 数学 专题 复习