全等三角形教案Word格式.docx
- 文档编号:15067146
- 上传时间:2022-10-27
- 格式:DOCX
- 页数:25
- 大小:326.44KB
全等三角形教案Word格式.docx
《全等三角形教案Word格式.docx》由会员分享,可在线阅读,更多相关《全等三角形教案Word格式.docx(25页珍藏版)》请在冰豆网上搜索。
形状与大小都完全相同的两个图形就是全等形.
要是把两个图形放在一起,能够完全重合,就可以说明这两个图形的形状、大小相同.
概括全等形的准确定义:
能够完全重合的两个图形叫做全等形.请同学们类推得出全等三角形的概念,并理解对应顶点、对应角、对应边的含义.仔细阅读课本中“全等”符号表示的要求.
Ⅱ.导入新课
将△ABC沿直线BC平移得△DEF;
将△ABC沿BC翻折180°
得到△DBC;
将△ABC旋转180°
得△AED.
议一议:
各图中的两个三角形全等吗?
不难得出:
△ABC≌△DEF,△ABC≌△DBC,△ABC≌△AED.
(注意强调书写时对应顶点字母写在对应的位置上)
启示:
一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,所以平移、翻折、旋转前后的图形全等,这也是我们通过运动的方法寻求全等的一种策略.
观察与思考:
寻找甲图中两三角形的对应元素,它们的对应边有什么关系?
对应角呢?
(引导学生从全等三角形可以完全重合出发找等量关系)
得到全等三角形的性质:
全等三角形的对应边相等.全等三角形的对应角相等.
[例1]如图,△OCA≌△OBD,C和B,A和D是对应顶点,说出这两个三角形中相等的边和角.
问题:
△OCA≌△OBD,说明这两个三角形可以重合,思考通过怎样变换可以使两三角形重合?
将△OCA翻折可以使△OCA与△OBD重合.因为C和B、A和D是对应顶点,所以C和B重合,A和D重合.
∠C=∠B;
∠A=∠D;
∠AOC=∠DOB.AC=DB;
OA=OD;
OC=OB.
总结:
两个全等的三角形经过一定的转换可以重合.一般是平移、翻转、旋转的方法.
[例2]如图,已知△ABE≌△ACD,∠ADE=∠AED,∠B=∠C,指出其他的对应边和对应角.
分析:
对应边和对应角只能从两个三角形中找,所以需将△ABE和△ACD从复杂的图形中分离出来.
根据位置元素来找:
有相等元素,它们就是对应元素,然后再依据已知的对应元素找出其余的对应元素.常用方法有:
(1)全等三角形对应角所对的边是对应边;
两个对应角所夹的边也是对应边.
(2)全等三角形对应边所对的角是对应角;
两条对应边所夹的角是对应角.
解:
对应角为∠BAE和∠CAD.
对应边为AB与AC、AE与AD、BE与CD.
[例3]已知如图△ABC≌△ADE,试找出对应边、对应角.(由学生讨论完成)
借鉴例2的方法,可以发现∠A=∠A,在两个三角形中∠A的对边分别是BC和DE,所以BC和DE是一组对应边.而AB与AE显然不重合,所以AB与AD是一组对应边,剩下的AC与AE自然是一组对应边了.再根据对应边所对的角是对应角可得∠B与∠D是对应角,∠ACB与∠AED是对应角.所以说对应边为AB与AD、AC与AE、BC与DE.对应角为∠A与∠A、∠B与∠D、∠ACB与∠AED.
做法二:
沿A与BC、DE交点O的连线将△ABC翻折180°
后,它正好和△ADE重合.这时就可找到对应边为:
AB与AD、AC与AE、BC与DE.对应角为∠A与∠A、∠B与∠D、∠ACB与∠AED.
Ⅲ.课堂练习:
课本练习1.
Ⅳ.课时小结
通过本节课学习,我们了解了全等的概念,发现了全等三角形的性质,并且利用性质可以找到两个全等三角形的对应元素.这也是这节课大家要重点掌握的.
找对应元素的常用方法有两种:
(一)从运动角度看
1.翻转法:
找到中心线,沿中心线翻折后能相互重合,从而发现对应元素.
2.旋转法:
三角形绕某一点旋转一定角度能与另一三角形重合,从而发现对应元素.
3.平移法:
沿某一方向推移使两三角形重合来找对应元素.
(二)根据位置元素来推理
1.全等三角形对应角所对的边是对应边;
两个对应角所夹的边是对应边.
2.全等三角形对应边所对的角是对应角;
Ⅴ.作业
11.2.1三角形全等的判定
1.三角形全等的“边边边”的条件.2.了解三角形的稳定性.
3.经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程.
三角形全等的条件.
寻求三角形全等的条件.
Ⅰ.创设情境,引入新课
出示投影片,回忆前面研究过的全等三角形.
已知△ABC≌△A′B′C′,找出其中相等的边与角.
图中相等的边是:
AB=A′B、BC=B′C′、AC=A′C.
相等的角是:
∠A=∠A′、∠B=∠B′、∠C=∠C′.
展示课作前准备的三角形纸片,提出问题:
你能画一个三角形与它全等吗?
怎样画?
(可以先量出三角形纸片的各边长和各个角的度数,再作出一个三角形使它的边、角分别和已知的三角形纸片的对应边、对应角相等.这样作出的三角形一定与已知的三角形纸片全等).
这是利用了全等三角形的定义来作图.那么是否一定需要六个条件呢?
条件能否尽可能少呢?
现在我们就来探究这个问题.
1.只给一个条件(一组对应边相等或一组对应角相等),画出的两个三角形一定全等吗?
2.给出两个条件画三角形时,有几种可能的情况,每种情况下作出的三角形一定全等吗?
分别按下列条件做一做.
①三角形一内角为30°
,一条边为3cm.
②三角形两内角分别为30°
和50°
.
③三角形两条边分别为4cm、6cm.
学生分组讨论、探索、归纳,最后以组为单位出示结果作补充交流.
结果展示:
1.只给定一条边时:
只给定一个角时:
2.给出的两个条件可能是:
一边一内角、两内角、两边.
可以发现按这些条件画出的三角形都不能保证一定全等.
给出三个条件画三角形,你能说出有几种可能的情况吗?
归纳:
有四种可能.即:
三内角、三条边、两边一内角、两内有一边.
在刚才的探索过程中,我们已经发现三内角不能保证三角形全等.下面我们就来逐一探索其余的三种情况.
已知一个三角形的三条边长分别为6cm、8cm、10cm.你能画出这个三角形吗?
把你画的三角形剪下与同伴画的三角形进行比较,它们全等吗?
1.作图方法:
先画一线段AB,使得AB=6cm,再分别以A、B为圆心,8cm、10cm为半径画弧,两弧交点记作C,连结线段AC、BC,就可以得到三角形ABC,使得它们的边长分别为AB=6cm,AC=8cm,BC=10cm.
2.以小组为单位,把剪下的三角形重叠在一起,发现都能够重合.这说明这些三角形都是全等的.
3.特殊的三角形有这样的规律,要是任意画一个三角形ABC,根据前面作法,同样可以作出一个三角形A′B′C′,使AB=A′B′、AC=A′C′、BC=B′C′.将△A′B′C′剪下,发现两三角形重合.这反映了一个规律:
三边对应相等的两个三角形全等,简写为“边边边”或“SSS”.
用上面的规律可以判断两个三角形全等.判断两个三角形全等的推理过程,叫做证明三角形全等.所以“SSS”是证明三角形全等的一个依据.请看例题.
[例]如图,△ABC是一个钢架,AB=AC,AD是连结点A与BC中点D的支架.
求证:
△ABD≌△ACD.
[分析]要证△ABD≌△ACD,可以看这两个三角形的三条边是否对应相等.
证明:
因为D是BC的中点
所以BD=DC
在△ABD和△ACD中
所以△ABD≌△ACD(SSS).
生活实践的有关知识:
用三根木条钉成三角形框架,它的大小和形状是固定不变的,而用四根木条钉成的框架,它的形状是可以改变的.三角形的这个性质叫做三角形的稳定性.所以日常生活中常利用三角形做支架.就是利用三角形的稳定性.例如屋顶的人字梁、大桥钢架、索道支架等.
Ⅲ.随堂练习
如图,已知AC=FE、BC=DE,点A、D、B、F在一条直线上,AD=FB.要用“边边边”证明△ABC≌△FDE,除了已知中的AC=FE,BC=DE以外,还应该有什么条件?
怎样才能得到这个条件?
2.课本练习.
本节课我们探索得到了三角形全等的条件,发现了证明三角形全等的一个规律SSS.并利用它可以证明简单的三角形全等问题.
略
Ⅵ.活动与探索
如图,一个六边形钢架ABCDEF由6条钢管连结而成,为使这一钢架稳固,请你用三条钢管连接使它不能活动,你能找出几种方法?
本题的目的是让学生能够进一步理解三角形的稳定性在现实生活中的应用.
结果:
(1)可从这六个顶点中的任意一个作对角线,把这个六边形划分成四个三角形.如图
(1)为其中的一种.
(2)也可以把这个六边形划分成四个三角形.如图
(2).
11.2.2三角形全等的判定
1.三角形全等的“边角边”的条件.
2.经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程.
3.掌握三角形全等的“SAS”条件,了解三角形的稳定性.
4.能运用“SAS”证明简单的三角形全等问题.
教学重点:
教学难点:
一、创设情境,复习提问
1.怎样的两个三角形是全等三角形?
2.全等三角形的性质?
3.指出图中各对全等三角形的对应边和对应角,并说明通过怎样的变换能使它们完全重合:
图
(1)中:
△ABD≌△ACE,AB与AC是对应边;
图
(2)中:
△ABC≌△AED,AD与AC是对应边.
4.三角形全等的判定Ⅰ的内容是什么?
二、导入新课
1.三角形全等的判定
(二)
(1)全等三角形具有“对应边相等、对应角相等”的性质.那么,怎样才能判定两个三角形全等呢?
也就是说,具备什么条件的两个三角形能全等?
是否需要已知“三条边相等和三个角对应相等”?
现在我们用图形变换的方法研究下面的问题:
如图2,AC、BD相交于O,AO、BO、CO、DO的长度如图所标,△ABO和△CDO是否能完全重合呢?
不难看出,这两个三角形有三对元素是相等的:
AO=CO,∠AOB=∠COD,BO=DO.
如果把△OAB绕着O点顺时针方向旋转,因为OA=OC,所以可以使OA与OC重合;
又因为∠AOB=∠COD,OB=OD,所以点B与点D重合.这样
△ABO与△CDO就完全重合.
(此外,还可以图1
(1)中的△ACE绕着点A逆时针方向旋转∠CAB的度数,也将与△ABD重合.图1
(2)中的△ABC绕着点A旋转,使AB与AE重合,再把△ADE沿着AE(AB)翻折180°
.两个三角形也可重合)
由此,我们得到启发:
判定两个三角形全等,不需要三条边对应相等和三个角对应相等.而且,从上面的例子可以引起我们猜想:
如果两个三角形有两边和它们的夹角对应相等,那么这两个三角形全等.
2.上述猜想是否正确呢?
不妨按上述条件画图并作如下的实验:
(1)读句画图:
①画∠DAE=45°
,
②在AD、AE上分别取B、C,使AB=3.1cm,AC=2.8cm.
③连结BC,得△ABC.④按上述画法再画一个△A'B'C'.
(2)把△A'B'C'剪下来放到△ABC上,观察△A'B'C'与△ABC是否能够完全重合?
3.边角边公理.
有两边和它们的夹角对应相等的两
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全等 三角形 教案