陕西高考数学试卷及答案解析Word文件下载.doc
- 文档编号:15037608
- 上传时间:2022-10-27
- 格式:DOC
- 页数:16
- 大小:1.48MB
陕西高考数学试卷及答案解析Word文件下载.doc
《陕西高考数学试卷及答案解析Word文件下载.doc》由会员分享,可在线阅读,更多相关《陕西高考数学试卷及答案解析Word文件下载.doc(16页珍藏版)》请在冰豆网上搜索。
我还是不知道我的成绩.根据以上信息,则()
A.乙可以知道四人的成绩
B.丁可以知道四人的成绩中u
C.乙、丁可以知道对方的成绩
D.乙、丁可以知道自己的成绩
8.执行右面的程序框图,如果输入的,则输出的
()
A.2B.3C.4D.5
9.若双曲线(,)的一条渐
近线被圆所截得的弦长为2,则的
离心率为()
A.2B.C.D.
10.已知直三棱柱中,,,,则异面直线与所成角的余弦值为()
A.B.C.D.
11.若是函数的极值点,则的极小值为()
A.B.C.D.1
12.已知是边长为2的等边三角形,P为平面ABC内一点,则的最小值是()
A.B.$来C.D.
二、填空题:
本题共4小题,每小题5分,共20分。
13.一批产品的二等品率为,从这批产品中每次随机取一件,有放回地抽取次,表示抽到的二等品件数,则.
14.函数()的最大值是.
15.等差数列的前项和为,,,则.
16.已知是抛物线的焦点,是上一点,的延长线交轴于点.若为的中点,则.
三、解答题:
共70分。
解答应写出文字说明、解答过程或演算步骤。
第17~21题为必做题,每个试题考生都必须作答。
第22、23题为选考题,考生根据要求作答。
(一)必考题:
共60分。
17.(12分)
的内角的对边分别为,已知.
(1)求
(2)若,面积为2,求
18.(12分)
淡水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:
kg)某频率直方图如下:
1.设两种养殖方法的箱产量相互独立,记A表示事件:
旧养殖法的箱产量低于50kg,新养殖法的箱产量不低于50kg,估计A的概率;
2.填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:
箱产量<50kg
箱产量≥50kg
旧养殖法
新养殖法
3.根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01)
P()
0.050
0.010
0.001
k
3.841
6.635
10.828
19.(12分)
如图,四棱锥P-ABCD中,侧面PAD为等比三角形且垂直于底面ABCD,
E是PD的中点.
(1)证明:
直线平面PAB
(2)点M在棱PC上,且直线BM与底面ABCD所
成锐角为,求二面角M-AB-D的余弦值
20.(12分)
设O为坐标原点,动点M在椭圆C:
上,过M做x轴的垂线,垂足为N,点P满足.
(1)求点P的轨迹方程;
(2)设点Q在直线x=-3上,且.证明:
过点P且垂直于OQ的直线l过C的左焦点F.
21.(12分)
已知函数且.
(1)求a;
(2)证明:
存在唯一的极大值点,且.
(二)选考题:
共10分。
请考生在第22、23题中任选一题作答。
如果多做,按所做的第一题计分。
22.[选修4-4:
坐标系与参数方程](10分)
在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)M为曲线上的动点,点P在线段OM上,且满足,求点P的轨迹的直角坐标方程;
(2)设点A的极坐标为,点B在曲线上,求面积的最大值.
23.[选修4-5:
不等式选讲](10分)
已知,证明:
(1);
(2).
参考答案
1.D
2.C
【解析】1是方程的解,代入方程得
∴的解为或,∴
3.B
【解析】设顶层灯数为,,,解得.
4.B
【解析】该几何体可视为一个完整的圆柱减去一个高为6的圆柱的一半.
5.A
【解析】目标区域如图所示,当直线取到点时,所求最小值为.
6.D
【解析】只能是一个人完成2份工作,剩下2人各完成一份工作.
由此把4份工作分成3份再全排得
7.D
【解析】四人所知只有自己看到,老师所说及最后甲说的话.
甲不知自己成绩→乙、丙中必有一优一良,(若为两优,甲会知道自己成绩;
两良亦然)→乙看了丙成绩,知自己成绩→丁看甲,甲、丁中也为一优一良,丁知自己成绩.
8.B
【解析】,,代入循环得,时停止循环,.
9.A
【解析】取渐近线,化成一般式,圆心到直线距离为
得,,.
10.C
【解析】,,分别为,,中点,则,夹角为和夹角或其补角(异面线所成角为)
可知,,
作中点,则可知为直角三角形.
,
中,
则,则中,
则中,
又异面线所成角为,则余弦值为.
11.A$来&
源:
【解析】,
则,
则,,
令,得或,
当或时,,
当时,,
则极小值为.
12.B
【解析】几何法:
如图,(为中点),
要使最小,则,方向相反,即点在线段上,
即求最大值,
又,
则.
解析法:
建立如图坐标系,以中点为坐标原点,
∴,,.
设,
,,,
∴
则其最小值为,此时,.
13.
【解析】有放回的拿取,是一个二项分布模型,其中,
则
14.
【解析】
令且
则当时,取最大值1.
15.
【解析】设首项为,公差为.
求得,中/华-资*源%库,则,
16.
【解析】则,焦点为,准线,
如图,为、中点,
故易知线段为梯形中位线,
∵,,
又由定义,
且,
17.
(1)依题得:
.
∵,
∴,
(2)由⑴可知.
∴.
18.
(1)记:
“旧养殖法的箱产量低于”为事件
“新养殖法的箱产量不低于”为事件
而
(2)Z
箱产量
中/华-资*源%库旧养殖法
62
38
34
66
由计算可得的观测值为
∵
∴有以上的把握产量的养殖方法有关.
(3),
,∴中位数为.
19.【解析】
(1)令中点为,连结,,.
∵,为,中点,∴为的中位线,∴.
又∵,∴.
又∵,∴,∴.
∴四边形为平行四边形,∴.
又∵,∴
(2)以中点为原点,如图建立空间直角坐标系.
设,则,,,,,
在底面上的投影为,∴.∵,
∴为等腰直角三角形.
∵为直角三角形,,∴.
设,,.∴.
.∴.
,.设平面的法向量.
,∴
,.设平面的法向量为,
∴二面角的余弦值为.
20.
【解析】⑴设,易知
又
∴,又在椭圆上.
∴,即.
⑵设点,,,
由已知:
设直线:
因为直线与垂直.
故直线方程为,
令,得,
若,则,,,
直线方程为,直线方程为,
直线过点,为椭圆的左焦点.
21.
【解析】⑴因为,,所以.
令,则,,
当时,,单调递减,但,时,;
当时,令,得.
当时,,单调减;
当时,,单调增.
若,则在上单调减,;
若,则在上单调增,;
若,则,.
综上,.
⑵,,.
令,则,.
令得,
当时,,单调递减;
当时,,单调递增.
所以,.
因为,,,,
所以在和上,即各有一个零点.
设在和上的零点分别为,因为在上单调减,
所以当时,,单调增;
当时,,单调减.因此,是的极大值点.
因为,在上单调增,所以当时,,单调减,时,单调增,因此是的极小值点.
所以,有唯一的极大值点.
由前面的证明可知,,则.
因为,所以,则
又,因为,所以.
因此,.
22.
【解析】⑴设
解得,化为直角坐标系方程为
⑵连接,易知为正三角形.
为定值.
∴当高最大时,面积最大,
如图,过圆心作垂线,交于点
交圆于点,
此时最大
23.
【解析】⑴由柯西不等式得:
当且仅当,即时取等号.
⑵∵
由均值不等式可得:
∴ 当且仅当时等号成立.
16
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 陕西 高考 数学试卷 答案 解析