离心率的五种求法Word格式文档下载.docx
- 文档编号:15034751
- 上传时间:2022-10-27
- 格式:DOCX
- 页数:7
- 大小:391.50KB
离心率的五种求法Word格式文档下载.docx
《离心率的五种求法Word格式文档下载.docx》由会员分享,可在线阅读,更多相关《离心率的五种求法Word格式文档下载.docx(7页珍藏版)》请在冰豆网上搜索。
解:
易知A(-1,0),则直线的方程为。
直线与两条渐近线和的交点分别为B、C,又|AB|=|BC|,可解得,则故有,从而选A。
二、变用公式,,整体求出
例2.已知双曲线的一条渐近线方程为,则双曲线的离心率为()
A. B. C. D.
本题已知,不能直接求出a、c,可用整体代入套用公式。
因为双曲线的一条渐近线方程为,所以,则,从而选A。
1.设双曲线(a>0,b>0)的渐近线与抛物线相切,则该双曲线的离心率等于(C)
A.B.2C.D.
由题双曲线的一条渐近线方程为,代入抛物线方程整理得,因渐近线与抛物线相切,所以,即.
2.过双曲线的右顶点作斜率为的直线,该直线与双曲线的两条渐近线的交点分别为.若,则双曲线的离心率是()
A.B.C.D.
答案:
C
【解析】对于,则直线方程为,直线与两渐近线的交点为B,C,,,
,即,
3.过椭圆()的左焦点作轴的垂线交椭圆于点,为右焦点,若,则椭圆的离心率为()
A.B.C.D.
【解析】因为,再由有即从而可得,故选B
三、构造、的齐次式,解出
根据题设条件,借助、、之间的关系,构造、的关系(特别是齐二次式),进而得到关于的一元方程,从而解得离心率。
例3.已知椭圆的左焦点为,右顶点为,点在椭圆上,且轴,直线交轴于点.若,则椭圆的离心率是()
A.B.C.D.
【解析】对于椭圆,因为,则
1.设和为双曲线()的两个焦点,若,是正三角形的三个顶点,则双曲线的离心率为()
A.B.C.D.3
【解析】由有,则,故选B.
2.双曲线虚轴的一个端点为,两个焦点为、,,则双曲线的离心率为()
ABCD
如图所示,不妨设,,,则
,又,
在中,由余弦定理,得,
即,∴,
∵,∴,∴,∴,∴,故选B
3.设是等腰三角形,,则以为焦点且过点的双曲线的离心率为(B)
A. B. C. D.
4.设双曲线的一个焦点为,虚轴的一个端点为,如果直线与该双曲线的一条渐近线垂直,那么此双曲线的离心率为()
A.B.C.D.
解析:
选D.不妨设双曲线的焦点在轴上,设其方程为:
,
则一个焦点为
一条渐近线斜率为:
,直线的斜率为:
,,
,解得.
5.设椭圆的两个焦点分别为F1、F2,过F2作椭圆长轴的垂线交椭圆于点P,若为等腰直角三角形,则椭圆的离心率是(D)
A. B. C. D.
由
6.双曲线的左、右焦点分别是,过作倾斜角为的直线交双曲线右支于点,若垂直于轴,则双曲线的离心率为(B)
A. B. C. D.
7.设分别是双曲线的左、右焦点,若双曲线上存在点,且,则双曲线的离心率为(B)
A. B. C. D.
解
8.如图,和分别是双曲线()的两个焦点,和是以为圆心,以为半径的圆与该双曲线左支的两个交点,且是等边三角形,则双曲线的离心率为()
A B C D
6.解析:
连接AF1,∠AF2F1=30°
,|AF1|=c,|AF2|=c,∴,
双曲线的离心率为,选D。
9.设、分别是椭圆()的左、右焦点,是其右准线上纵坐标为(为半焦距)的点,且,则椭圆的离心率是()
A B C D
10.设双曲线()的半焦距为,直线过,两点.已知原点到直线的距离为,则双曲线的离心率为()
A.B.C.D.
由已知,直线的方程为,由点到直线的距离公式,得,
又,∴,两边平方,得,整理得,
得或,又,∴,∴,∴,故选A
11.知、是双曲线()的两焦点,以线段为边作正三角形,若边的中点在双曲线上,则双曲线的离心率是()
A. B. C. D.
如图,设的中点为,
把P点坐标代人双曲线方程,有,
化简得解得,故选D
四、第二定义法
由圆锥曲线的统一定义(或称第二定义)知离心率e是动点到焦点的距离与相应准线的距离比,特别适用于条件含有焦半径的圆锥曲线问题。
例4:
设椭圆()的右焦点为,右准线为,若过且垂直于轴的弦的长等于点到的距离,则椭圆的离心率是 .
如图所示,是过且垂直于轴的弦,
∵于,∴为到准线的距离,根据椭圆的第二定义,
1.在给定椭圆中,过焦点且垂直于长轴的弦长为,焦点到相应准线的距离为,则该椭圆的离心率为()
ABCD
2.在给定双曲线中,过焦点垂直于实轴的弦长为,焦点到相应准线的距离为,则该双曲线的离心率为()
ABCD
五、构建关于的不等式,求的取值范围
1.已知双曲线()的右焦点为,若过点且倾斜角为的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是()
ABCD
2.椭圆()的焦点为、,两条准线与轴的交点分别为、,若,则该椭圆离心率的取值范围是( )
A. B. C. D.
1.双曲线的右焦点为F,若过点F且倾斜角为的直线与双曲线的右支有且只有一个交点,则该直线的斜率的绝对值小于等于渐近线的斜率,∴≥,离心率e2=,∴e≥2,选C
2.椭圆的焦点为,,两条准线与轴的交点分别为,若,,,则,该椭圆离心率e≥,选D
3.已知、是椭圆的两个焦点,满足的点总在椭圆内部,则椭圆离心率的取值范围是(C)
A.B.C.D.
满足的点总在椭圆内部,所以c<
b.
4.设,则双曲线的离心率的取值范围是(B)
7
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 离心 求法